Skip to main content
Log in

A computer study of ammonium adsorption on water clusters

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The molecular dynamics method is used to study the adsorption of ammonia on water clusters. The adsorption of ammonia is accompanied by a decrease in the ability of the cluster system to absorb infrared radiation, a significant decline in the thermal radiation power emitted by the system, and an almost double decrease in the frequency-averaged reflection coefficient. An increase in the concentration of ammonia in the clusters causes a slight change in IR absorption coefficient, but enhances the power of emission and reflection coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kulmala, H. Vehkamaki, T. Petaja, et al., J. Aerosol Sci. 35, 143 (2004).

    Article  CAS  Google Scholar 

  2. A. E. Galashev and O. R. Rakhmanova, Inzh.-Fiz. Zh. 84, 1148 (2011).

    Google Scholar 

  3. A. Y. Galashev, in Chlorine. Properties, Applications and Health Effects, Eds. by R. Mangione and D. Carlyle (Nova Science, New York, 2012), pp. 1–53.

  4. A. E. Galashev, High Temp. 48, 518 (2010).

    Article  CAS  Google Scholar 

  5. V. Vaida, H. G. Kjaergaard, and K. J. Feierabend, Int. Res. Phys. Chem. 22, 203 (2003).

    Article  CAS  Google Scholar 

  6. C. Lee, G. Fitzgerald, M. Planas, and J. J. Novoa, J. Phys. Chem. 100, 7398 (1996).

    Article  CAS  Google Scholar 

  7. D. J. Donaldson, J. Phys. Chem. A 103, 62 (1999).

    Article  CAS  Google Scholar 

  8. D. E. Bacelo, J. Phys. Chem. A 106, 11190 (2002).

    Article  CAS  Google Scholar 

  9. Y. S. Wang, H. C. Chang, J. C. Jiang, et al., J. Am. Chem. Soc. 120, 8777 (1998).

    Article  CAS  Google Scholar 

  10. T. E. Morrell and G. C. Shields, J. Phys. Chem. A 114, 4266 (2010).

    Article  CAS  Google Scholar 

  11. L. X. Dang and T.-M. Chang, J. Chem. Phys. 106, 8149 (1997).

    Article  CAS  Google Scholar 

  12. A. E. Galashev and O. R. Rakhmanova, Russ. J. Phys. Chem. B 5, 197 (2011).

    Article  CAS  Google Scholar 

  13. M. H. New and B. J. Berne, J. Am. Chem. Soc. 117, 7172 (1995).

    Article  CAS  Google Scholar 

  14. Chemists Manual, Ed. by B. P. Nikol’skii (Khimiya, Leningrad, 1971), Vol. 1 [in Russian].

    Google Scholar 

  15. H. L. Lemberg and F. H. Stillinger, J. Chem. Phys. 62, 1677 (1975).

    Article  CAS  Google Scholar 

  16. A. Rahman, F. H. Stillinger, and H. L. Lemberg, J. Chem. Phys. 63, 5223 (1975).

    Article  CAS  Google Scholar 

  17. H. Saint-Martin, B. Hess, and H. J. C. Berendsen, J. Chem. Phys. 120, 11133 (2004).

    Article  CAS  Google Scholar 

  18. J. M. Haile, Molecular Dynamics Simulation. Elementary Methods (Wiley, New York, 1992).

    Google Scholar 

  19. V. N. Koshlyakov, Problems of Solid Dynamics and Applied Gyroscope Theory (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  20. R. Sonnenschein, J. Comp. Phys. 59, 347 (1985).

    Article  CAS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  22. Physical Encyclopedy, Ed. by A. M. Prokhorov (Sov. entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].

    Google Scholar 

  23. F. Bresme, J. Chem. Phys. 115, 7564 (2001).

    Article  CAS  Google Scholar 

  24. M. Neumann, J. Chem. Phys. 82, 5663 (1985).

    Article  CAS  Google Scholar 

  25. W. B. Bosma, L. E. Fried, and S. Mukamel, J. Chem. Phys. 98, 4413 (1993).

    Article  CAS  Google Scholar 

  26. M. Neumann, J. Chem. Phys. 85, 1567 (1986).

    Article  CAS  Google Scholar 

  27. C. A. Angell and V. Rodgers, J. Chem. Phys. 80, 6245 (1984).

    Article  CAS  Google Scholar 

  28. P. L. Goggin and C. Carr, in Water and Aqueous Solutions, Eds. by G. W. Neilson and J. E. Enderby (Adam Hilger, Bristol, Boston, 1986), Vol. 37, pp. 149–161.

  29. L. Kleiner, R. Brown, G. Tarrago, et al., J. Mol. Spectrosc. 196, 46 (1999).

    Article  Google Scholar 

  30. M. A. El’yashevich, Atomic and Molecular Spectroscopy (GIFML, Moscow, 1962) [in Russian].

    Google Scholar 

  31. A. E. Galashev, O. R. Rakhmanova, and O. A. Novruzova, High Temp. 49, 193 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 7, pp. 86–93.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E. A computer study of ammonium adsorption on water clusters. Russ. J. Phys. Chem. B 7, 502–508 (2013). https://doi.org/10.1134/S1990793113050047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113050047

Keywords

Navigation