Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 4, pp 458–470 | Cite as

New directions of femtochemistry and femtobiology

  • O. M. SarkisovEmail author
Effect of External Factors on Physicochemical Transformations

Abstract

In recent years, femtochemistry and femtobiology have been quickly progressing. The specific characteristics of femtosecond pulses have extended the possibilities of traditional experiments and allowed obtaining new previously inacceptable information. New lines of research have emerged. This publication overviews studies performed at the Semenov Institute of Chemical Physics of the Russian Academy of Sciences. These studies cover three new directions: the mechanisms of intramolecular physicochemical processes occurring on the femto-picosecond timescale, coherent photochemistry based on the action of femtosecond pulses, and physicochemical processes initiated by multiphoton absorption of femtosecond radiation. The scope of these directions is illustrated by the results of studies of actual chemical and biological systems.

Keywords

femtochemistry coherent photochemistry product yield control dynamics and reaction mecha-nisms femtosecond pulses multiphoton absorption microsurgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Zewail, J. Phys. Chem. 100, 12701 (1996).CrossRefGoogle Scholar
  2. 2.
    Femtochemistry and Femtobiology, Ed. by V. Sundstrom (World Scientific, Singapore, 1998).Google Scholar
  3. 3.
    O. M. Sarkisov and S. Ya. Umanskii, Russ. Chem. Rev. 70, 449 (2001).CrossRefGoogle Scholar
  4. 4.
    O. M. Sarkisov, Russ. Chem. Bull., 58, 735 (2008).Google Scholar
  5. 5.
    O. M. Sarkisov, Herald Russ. Acad. Sci. 81, 261 (2011).CrossRefGoogle Scholar
  6. 6.
    V. V. Lozovoy and M. Dantus, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 102, 227 (2006).CrossRefGoogle Scholar
  7. 7.
    G. V. Hartland, Annu. Rev. Phys. Chem. 57, 403 (2006).CrossRefGoogle Scholar
  8. 8.
    V. V. Lozovoy, O. M. Sarkisov, A. S. Vetchinkin, and S. Ya. Umanskii, Chem. Phys. 243, 94 (1999).CrossRefGoogle Scholar
  9. 9.
    A. N. Kostrov, A. V. Aibushev, F. E. Gostev, I. V. Shelaev, O. M. Sarkisov, N. N. Denisov, D. V. Khudyakov, and V. A. Nadtochenko, High Energy Chem. 45, 250 (2011).CrossRefGoogle Scholar
  10. 10.
    S. K. Gularyan, A. N. Petrukhin, P. N. Zolotavin, V. Yu. Svetlichnyi, G. E. Dobretsov, and O. M. Sarkisov, Biol. Membr. 71, 514 (2006).Google Scholar
  11. 11.
    S. K. Gularyan, O. M. Sarkisov, G. E. Dobretsov, V. Yu. Svetlichnyi, F. E. Gostev and S. A. Antipin, Russ. Chem. Bull., 53, 1670 (2004).CrossRefGoogle Scholar
  12. 12.
    A. N. Romanov, S. K. Gularyan, B. M. Poluak, R. A. Sakovich, G.. E. Dobretsov, and O. M. Sarkisov, Phys. Chem. Chem. Phys. 13, 9518 (2011).CrossRefGoogle Scholar
  13. 13.
    I. V. Shelaev, F. E. Gostev, M. I. Vishnev, A.Ya. Shkuropatov, V.V. Ptushenko, M.D. Mamedov, O.M. Sarkisov, V.A. Nadtochenko, A.Yu. Semenov, and V.A. Shuvalov, J. Photochem. Photobiol. B: Biology 104, 44 (2011).CrossRefGoogle Scholar
  14. 14.
    V. A. Shuvalov and O. M. Sarkisov, Herald Russ. Acad. Sci. 81, 265 (2011).CrossRefGoogle Scholar
  15. 15.
    O. M. Sarkisov, F. E. Gostev, I. V. Shelaev, V. I. Novoderezhkin, O. A. Gopta, M. D. Mamedov, A. Yu. Semenov, and V. A. Nadtochenko, Phys. Chem. Chem. Phys. 8, 5671 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Savikhin, W. Xu, P. R. Chitnis, and W. S. Struve, Biophys. J. 79, 1573 (2000).CrossRefGoogle Scholar
  17. 17.
    I. V. Shelaev, Candidate’s Dissertation in Mathematics and Physics (Inst. Chem. Phys. Russ. Acad. Sci., Moscow, 2010).Google Scholar
  18. 18.
    O. A. Smitienko, I. V. Shelaev, F. E. Gostev, T. B. Fel’dman, V. A. Nadtochenko, V. M. Sarkisov, and M. A. Ostrovskii, Dokl. Biochem. Biophys. 421, 194 (2008).CrossRefGoogle Scholar
  19. 19.
    O. A. Smitienko, M. N. Mozgovaya, I. V. Shelaev, F. E. Gostev, T. B. Feldman, V. A. Nadtochenko, O. M. Sarkisov, and M. A. Ostrovsky, Biochemistry (Moscow) 75, 25 (2010).CrossRefGoogle Scholar
  20. 20.
    M. N. Mozgovaya, O. A. Smitienko, I. V. Shelaev, F. E. Gostev, T. B. Fel’dman, V. A. Nadtochenko, O. M. Sarkisov, and M.A. Ostrovskii, Dokl. Biochem. Biophys. 435, 302 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Kawata, H. Sun, T. Tanaka, and K. Tanaka, Nature 412, 697 (2001).CrossRefGoogle Scholar
  22. 22.
    J. H. Strickler and W. W. Webb, Opt. Lett. 16, 1780 (1991).CrossRefGoogle Scholar
  23. 23.
    Li. Linjie and T. Fourkas, Mater. Today 10(6), 30 (2007).CrossRefGoogle Scholar
  24. 24.
    S.-H. Park, D.-Y. Yang, and K.-S. Lee, Laser Photon Rev. 3, 1 (2009).CrossRefGoogle Scholar
  25. 25.
    A. Pikulin and N. Bityurin, Phys. Rev. B: Condens. Matter Mater. Phys. 75, 195430–11 (2007).CrossRefGoogle Scholar
  26. 26.
    A. D. Zalesskii, N. A. Danil’chenko, Yu. V. Barbashov, B. I. Zapadinskii, O. M. Sarkisov, Khim. Fiz. 31(6), 3 (2012).Google Scholar
  27. 27.
    V. Kohli and A. Y. Elezzabi, Inc. Wiley Interdiscripl. Rev. Nanomed. Nanobiotechnol. 1, 11 (2009).CrossRefGoogle Scholar
  28. 28.
    I. V. Reshetov, V. V. Buchanov, and O. M. Sarkisov, Tr.Mosk. Fiz. Tekh. Inst. 1(1), 53 (2009).Google Scholar
  29. 29.
    V. V. Buchanov, V. A. Derzhavin, A. D. Zalesskii, I. V. Reshetov, O. M. Sarkisov, and A. I. Shushin, Kvantovaya Elektron. (Moscow) 40, 446 (2010).CrossRefGoogle Scholar
  30. 30.
    A. K. Shakhbazyan, A. K. Karmenyan, T. A. Sviridova Chailakhyan, A. S. Krivokharchnko, A. Choi, and L. M. Chailakhyan, Dokl. Biol. Sci. 429, 587 (2009).CrossRefGoogle Scholar
  31. 31.
    A. Vogel, J. Noack, G. Huttman, and G. Paltauf, Appl. Phys. B 81, 1015 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations