Russian Journal of Physical Chemistry B

, Volume 6, Issue 4, pp 517–522 | Cite as

Gas-phase spontaneous ignition of hydrocarbons

  • A. A. Borisov
  • N. M. Rubtsov
  • G. I. Skachkov
  • K. Ya. TroshinEmail author
Combustion, Explosion, and Shock Waves


The ignition of hydrocarbons at low temperatures is experimentally studied in a rapid-mixture-injection static reactor. The ignition process was monitored using a high-speed color video camera. It was found that, at low temperatures, ignition starts in kernels, a feature also characteristic of methods for measuring the ignition delay time at high and medium temperatures (shock tube, rapid compression machine). Kernel-mode ignition is associated with gas-dynamic phenomena inherent in different techniques of heating the gas to the desired temperature. Ignition in the kernel is of chain-thermal nature. The emergence of a visible kernel can be considered the beginning of hot flame propagation. It is shown that, in the self-ignition mode, the propagation of the flame front from the initial kernel occurs by the induction mechanism, proposed by Ya.B. Zel’dovich, rather than by the diffusion-heat-conduction mechanism. Introduction of a platinum wire into the reactor produces a catalytic effect in the negative temperature coefficient region, while virtually unaffecting the ignition delay at lower temperatures.


ignition hydrocarbon fuels kernel ignition high-speed filming negative temperature coefficient induction mechanism of flame propagation static setup catalytic surface convective heat transfer chain-thermal explosion ignition delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Semenov, Chain Reactions (Goskhimtekhizdat, Leningrad, 1934) [in Russian].Google Scholar
  2. 2.
    Ya. B. Zel’dovich and D. A. Frank-Kamenetskii, Zh. Fiz. Khim. 12, 100 (1938).Google Scholar
  3. 3.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  4. 4.
    O. M. Todes, Zh. Fiz. Khim. 13, 868 (1939).Google Scholar
  5. 5.
    A. A. Borisov, Doctoral Dissertation in Mathematics and Physics (Inst. Chem. Phys. Acad. Sci. SSSR, Moscow, 1970).Google Scholar
  6. 6.
    S. G. Saytzev and R. I. Soloukhin, in Proceedings of the 8th International Symposium on Combustion, Pittsburgh, United States, 1962 (The Combust. Inst., Pittsburgh, 1962), p. 2797.Google Scholar
  7. 7.
    J. C. Livengood and W. A. Leary, Ind. Eng. Chem. 43, 2797 (1951).CrossRefGoogle Scholar
  8. 8.
    A. A. Borisov, V. G. Knorre, E. L. Kudryashova, G. I. Skachkov, and K. Ya. Troshin, Khim. Fiz. 17(7), 139 (1998).Google Scholar
  9. 9.
    Y. B. Zel’dovuch, B. E. Gelfand, S. A. Tsyganov, S. M. Frolov, A. N. Polenov, “Dynamics of Explosions,” Prog. Astronaut. Aeronaut. 114, 99 (1988).Google Scholar
  10. 10.
    G. I. Skachkov, Doctoral Dissertation in Chemistry (Inst. Chem. Phys. Acad. Sci. SSSR, Moscow, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Borisov
    • 1
  • N. M. Rubtsov
    • 2
  • G. I. Skachkov
    • 1
  • K. Ya. Troshin
    • 1
    Email author
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Structural Macrokinetics and Problems of Materials ScienceRussian Academy of SciencesChernogolovla, Moscow oblastRussia

Personalised recommendations