Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 4, pp 538–542 | Cite as

Tritium planigraphy as a tool for studying the structural organization nanobiocomplexes

  • E. N. BogachevaEmail author
  • A. A. Dolgov
  • A. L. Chulichkov
  • A. V. Shishkov
Chemical Physics of Biological Processes

Abstract

The tritium planigraphy method is based on the nonselective substitution of radioactive isotope tritium for hydrogen in hydrocarbon fragments of molecules by means of a chemical reaction involving hot tritium atoms. Data on the steric accessibility of the system components (macromolecules in the complex, amino acid residues, and even individual atomic groups of macromolecules) characterize the structure of the object. The method, applicable to substances in different phase states, has no restrictions on the molecular weight of the target. Tritium planigraphy, used equally successfully in both crystals and solutions, makes it possible to study fine changes in the structure. The main results of studies of the structure of nanosized biocompexes by tritium planigraphy are presented.

Keywords

tritium planigraphy protein structure nanobiocompexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Shishkov and E. N. Bogacheva, Methods in Protein Structure and Stability Analysis: Conformational Stability, Size, Shape and Surface of Protein Molecules, Ed. by V. N. Uversky and E. A. Permyakov (Nova, New York, 2007).Google Scholar
  2. 2.
    L. A. Baratova, E. N. Bogacheva, V. I. Gol’danskii, V. A. Kolb, A. S. Spirin, and A. V. Shishkov, Tritium Planigraphy of Biological Macromolecules (Nauka, Moscow, 1999) [in Russian].Google Scholar
  3. 3.
    V. I. Goldanskii, I. A. Kashirin, A. V. Shishkov, L. A. Baratova, and N. I. Grebenchshikov, J. Mol. Biol. 201, 567 (1988).CrossRefGoogle Scholar
  4. 4.
    L. A. Baratova, A. V. Efimov, E. N. Dobrov, N. V. Fedorova, R. Hunt, G. A. Badun, A. L. Ksenofontov, L. Torrance, and L. Jarvekulg, J. Virol. 75, 9696 (2001).CrossRefGoogle Scholar
  5. 5.
    E. N. Dobrov, A. V. Efimov, and L. A. Baratova, Mol. Biol. 38, 806 (2004).CrossRefGoogle Scholar
  6. 6.
    D. E. Agafonov, V. A. Kolb, and A. S. Spirin, Proc. Natl. Acad. Sci. U.S.A. 94, 12892 (1997).CrossRefGoogle Scholar
  7. 7.
    V. A. Kolb, Biochemistry (Moscow) 75, 1517 (2010).CrossRefGoogle Scholar
  8. 8.
    R. W. Ruigrok, A. Barge, P. Durrer, J. Brunner, K. Ma, and G. R. Whittaker, Virology 267, 289 (2000).CrossRefGoogle Scholar
  9. 9.
    A. V. Shishkov, V. I. Goldanskii, L. A. Baratova, N. V. Fedorova, A. L. Ksenofontov, O. P. Zhirnov, and A. V. Galkin, Proc. Natl. Acad. Sci. U.S.A. 96, 7827 (1999).CrossRefGoogle Scholar
  10. 10.
    A. L. Ksenofontov, N. V. Fedorova, G. A. Badun, T. A. Timofeeva, V. B. Grigor’ev, L. A. Baratova, and O. P. Zhirnov, Mol. Biol. 33, 780 (1999).Google Scholar
  11. 11.
    A. V. Shishkov, E. N. Bogacheva, A. A. Dolgov, A. L. Chulichkov, D. G. Knyazev, N. V. Fedorova, A. L. Ksenofontov, L. V. Kordyukova, E. V. Lukashina, V. M. Mirsky, and L. A. Baratova, Protein Pept. Lett. 16, 1407 (2009).CrossRefGoogle Scholar
  12. 12.
    E. N. Bogacheva, A. L. Ksenofontov, A. A. Dolgov, A. L. Chulichkov, A. V. Shishkov, G. A. Badun, N. V. Fedorova, and L. A. Baratova, Persp. Mater., No. 10, 332 (2011).Google Scholar
  13. 13.
    C. Schaefer, A. Schlessinger, and B. Rost, Bioinformatics 26, 625 (2010).CrossRefGoogle Scholar
  14. 14.
    S. Arzt, F. Baudin, A. Barge, P. Timmins, W. P. Burmeister, and R. W.H. Ruigrok, Virology 279, 439 (2001).CrossRefGoogle Scholar
  15. 15.
    V. N. Uversky, Protein Sci. 11, 739 (2002).CrossRefGoogle Scholar
  16. 16.
    K. M. Misura, D. Chivian, C. A. Rohl, D. E. Kim, and D. Baker, Proc. Natl. Acad. Sci. U.S.A. 103, 5361 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. N. Bogacheva
    • 1
    Email author
  • A. A. Dolgov
    • 1
  • A. L. Chulichkov
    • 1
  • A. V. Shishkov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations