Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 425–432 | Cite as

Organic fiber reinforced plastics based on complex hybrid matrices including polysulfone and carbon nanotubes as modifiers of epoxy resins

  • V. I. SolodilovEmail author
  • R. A. Korokhin
  • Yu. A. Gorbatkina
  • A. M. Kuperman
Chemical Physics of Polymer Materials


Organic Fiber Reinforced Plastics (OFRP) based on aramid fibers are as a rule used in constructions working under extremal conditions. In view of this, the possibility of increasing the resistance of OFRP to destruction by modifying matrices with thermoplastic polymers and carbon nanotubes (CNTs) offers much promise. In this work, we present the results obtained in a study of the properties of OFRP based on Rusar fibers and epoxy matrices containing either CNTs or a thermoplastic (PSK-1 polysulfone) or both these components simultaneously. The data obtained substantiate the possibility of using epoxypolysulfone matrices for the preparation of wound composites. This modification noticeably increases crack and impact resistance of OFRP based on aramid fibers without decreasing the glass transition temperature, as when matrices are plasticized by rubber and active diluents. The strongest effect of polysulfone introduced into an epoxy matrix is observed at a large (20 wt %) content of PSK-1. The modification of epoxypolysulfone matrices by CNTs also increases the shear strength of OFRP and almost does not change the fracture toughness and compression strength. The introduction of CNTs into epoxy matrices is less effective and can increase crack growth resistance of OFRP by approximately 30% only at a large (1%) content of CNTs. Small CNT admixtures (0.3–0.6%) do not influence the fracture toughness. Possible mechanisms of the changes observed are considered.


organic fiber reinforced plastics carbon nanotubes epoxy and epoxypolysulfone binders physicomechanical characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Bologov, A. M. Kuperman, and M. G. Karpman, Mekhan. Kompoz. Mater. Konstruk. 5(4), 33 (1999).Google Scholar
  2. 2.
    W. D. Bascom, J. L. Bitner, R. J. Moulton, and A. R. Siebert, Composites 11(1), 9 (1980).CrossRefGoogle Scholar
  3. 3.
    M. L. Kerber, V. M. Vinogradov, G. S. Golovkin, et al., Polymer Composite Materials: Structure, Properties, and Technology, Training Manual, Ed. by A. A. Berlin (Professiya, St. Petersburg, 2008) [in Russian].Google Scholar
  4. 4.
    N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al., Physics of Composite Materials (Mir, Moscow, 2005) [in Russian].Google Scholar
  5. 5.
    K. Mimura and H. Ito, Polymer 41, 4451 (2000).CrossRefGoogle Scholar
  6. 6.
    I. Martinez, M. D. Martin, A. Eceiza, P. Oyanguren, and I. Mondragon, Polymer 41, 1027 (2000).CrossRefGoogle Scholar
  7. 7.
    P. T. McGrail and S. D. Jenkins, Polymer 34, 677 (1993).CrossRefGoogle Scholar
  8. 8.
    E. V. Pisanova, S. F. Zhandarov, and O. R. Yurkevich, J. Adhesion 64, 111 (1997).CrossRefGoogle Scholar
  9. 9.
    Seunghan Shin and Jyongsik Jang, J. Mater. Sci. 35, 2047 (2000).CrossRefGoogle Scholar
  10. 10.
    V. I. Solodilov and Yu. A. Gorbatkina, Mekhan. Kompoz. Mater. 42, 739 (2006).Google Scholar
  11. 11.
    V. I. Solodilov and Yu. A. Gorbatkina, Mekhan. Kompoz. Mater. Konstruk. 14, 224 (2008).Google Scholar
  12. 12.
    V. G. Khozin, Reinforcement of Epoxy Polymers (Dom pechati, Kazan, 2004) [in Russian].Google Scholar
  13. 13.
    R. A. Korokhin, V. I. Solodilov, and Yu. A. Gorbatkina, Mekhan. Kompoz. Mater. Konstruk. 15, 437 (2009).Google Scholar
  14. 14.
    V. I. Solodilov, R. A. Korokhin, A. M. Kuperman, and S. V. Kondrashov, in Proceedings of the 6th International Conference on Carbon: Fundamental Problems of Science, Science of Materials, Technology (FGU TIS-NUM, Troitsk, 2009), p. 204.Google Scholar
  15. 15.
    Nor Hamidah Mohd Zulfli and Chow Wen Shyang, J. Phys. Sci. 21(2), 41 (2010).Google Scholar
  16. 16.
    J. F. Timmerman, B. S. Hayes, and J. C. Seferis, Compos. Sci. Technol. 62, 1249 (2002).CrossRefGoogle Scholar
  17. 17.
    M. H. G. Wichmann, J. Sumfleth, B. Fiedler, F. H. Gojny, and K. Schulte, Mech. Compos. Mater. 42, 395 (2006).CrossRefGoogle Scholar
  18. 18.
    Young Seok Song and Jae Ryoun Youn, e-Polymers, No. 80, 1 (2004).Google Scholar
  19. 19.
    F. Gojny, M. Wichmann, B. Fiedler, and K. Schulte, Compos. Sci. Technol. 65, 2300 (2005).CrossRefGoogle Scholar
  20. 20.
    R. A. Korokhin, V. I. Solodilov, and Yu. A. Gorbatkina, in Proceedings of the 24th Symposium on Rheology (INKhS RAN, Karacharovo, 2008), p. 71.Google Scholar
  21. 21.
    V. I. Solodilov, Yu. A. Gorbatkina, R. A. Korokhin, and A. M. Kuperman, in Proceedings of the Scientific Conference of Laboratory of Polymers and Composite Materials (IKhF RAN, Moscow, 2009), p. 157.Google Scholar
  22. 22.
    I. D. Simonov-Emel’yanov, S. V. Vlasov, L. V. Aristovskaya, et al., Practical Work on Polymer Materials Science, Ed. by P. G. Babaevskii (Khimiya, Moscow, 1980) [in Russian].Google Scholar
  23. 23.
    Composite Materials, Ed. by V. V. Vasil’ev and Yu.M. Tarnapol’skii (Mashinostroenie, Moscow, 1990) [in Russian].Google Scholar
  24. 24.
    W. J. Cantwell and J. Morton, Composites 22, 347 (1991).CrossRefGoogle Scholar
  25. 25.
    R. L. Ellis, F. Lalande, H. Jia, and C. A. Rogers, Polymer 38, 269 (1997).CrossRefGoogle Scholar
  26. 26.
    A. V. Antonov, E. S. Zelenskii, A. M. Kuperman, O. V. Lebedeva, and A. A. Rybin, Mekhan. Kompoz. Mater. 34, 17 (1998).Google Scholar
  27. 27.
    V. I. Solodilov, S. L. Bazhenov, Yu. A. Gorbatkina, and A. M. Kuperman, Mekhan. Kompoz. Mater. 38, 615 (2003).Google Scholar
  28. 28.
    A. E. Chalykh, V. K. Gerasimov, A. E. Bukhtev, et al., Polym. Sci., Ser. A 45, 676 (2003).Google Scholar
  29. 29.
    J. E. Robertson, T. C. Ward, and A. J. Hill, Polymer 41, 6251 (2000).CrossRefGoogle Scholar
  30. 30.
    P. G. Babaevskii and S. G. Kulik, Crack Resistance of Cured Polymer Compositions (Khimiya, Moscow, 1991) [in Russian].Google Scholar
  31. 31.
    A. N. Shubin, Candidate’s Dissertation in Technical Sciences (MATI-RGTU, Moscow, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. I. Solodilov
    • 1
    Email author
  • R. A. Korokhin
    • 1
  • Yu. A. Gorbatkina
    • 1
  • A. M. Kuperman
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations