Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 407–415 | Cite as

About the role played by mobile nanovoids in the stimulation of solid-state processes

  • A. M. KaplanEmail author
  • N. I. Chekunaev
Chemical Physics of Polymer Materials


A review of works on chain solid-state processes a correct description of which requires taking into account the effect of their stimulation by mobile nanovoids is presented. It is shown that nontrivial (specific) kinetic features of solid-state polymerization, energy saving high-temperature shear grinding of polymers, and electron transfer in glasses through distances large in comparison with intermolecular distances can only be explained using the effect mentioned above. A mechanism of gasless flame initiated and sustained by mobile nanovoids and microcracks in strained chemically active composites was suggested and analyzed.


mobile nanovoids shear grinding of polymers chain solid-state flame 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Kaplan, Doctoral Dissertation in Chemistry (Inst. Chem. Phys. RAS, Moscow, 1996).Google Scholar
  2. 2.
    A. M. Kaplan and N. I. Chekunaev, Russ. Chem. Bull. 58, 1616 (2009).CrossRefGoogle Scholar
  3. 3.
    A. M. Kaplan, D. P. Kiryukhin, I. M. Barkalov, and V. I. Gol’danskii, Vysokomol. Soedin. B 11, 639 (1969).Google Scholar
  4. 4.
    N. M. Emmanuel and A. L. Buchachenko, Chemical Physics of Molecular Destruction and Stabilization of Polymers (Nauka, Moscow, 1988) [in Russian].Google Scholar
  5. 5.
    C. Chachaty and A. Forchioni, J. Polym. Sci. A-1 10, 1905 (1972).CrossRefGoogle Scholar
  6. 6.
    D. P. Kiryukhin, A. M. Kaplan, I. M. Barkalov, and V. I. Gol’danskii, Dokl. Akad. Nauk SSSR 211, 632 (1973).Google Scholar
  7. 7.
    G. A. Adadurov, V. V. Gustov, A. M. Kaplan, M. Yu. Kosygin, and P. A. Yampol’skii, Fiz. Goreniya Vzryva 8, 566 (1972).Google Scholar
  8. 8.
    I. I. Migunova, A. M. Kaplan, A. I. Mikhailov, V. S. Ivanov, and I. M. Barkalov, Vysokomol. Soedin. 15, 977 (1973).Google Scholar
  9. 9.
    G. N. Gerasimov, T. A. Bespyatkina, T. M. Sabirova, and A. D. Abkin, Dokl. Akad. Nauk SSSR 209, 628 (1973).Google Scholar
  10. 10.
    I. B. Rabinovich, Strength, Temperature, Time (Nauka, Moscow, 1968) [in Russian].Google Scholar
  11. 11.
    A. M. Kaplan and N. I. Chekunaev, Dokl. Phys. Chem. 425, 51 (2009).CrossRefGoogle Scholar
  12. 12.
    A. M. Kaplan and N. I. Chekunaev, Polym. Sci., Ser. B 52, 57 (2010).CrossRefGoogle Scholar
  13. 13.
    S. A. Wolfson and V. G. Nikol’skii, Vysokomol. Soedin. A 36, 1040 (1994).Google Scholar
  14. 14.
    V. N. Balyberdin and V. G. Nikol’skii, RF Patent No. 2173634, Byull. Izobret., No. 26 (2001), p. 23.Google Scholar
  15. 15.
    G. M. Bartenev, Encyclopedy of Polymers (Sov. Entsiklopediya, Moscow, 1977), Vol. 3, p. 223 [in Russian].Google Scholar
  16. 16.
    A. M. Kaplan, N. I. Chekunaev, and V. G. Nikol’skii, Russ. J. Phys. Chem. A 73, 1509 (1999).Google Scholar
  17. 17.
    G. M. Bartenev, Strength and Failure Mechanisms in Polymers (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  18. 18.
    I. Narisava, Strength of Polymeric Materials (Ohmsha, Tokyo, 1982; Khimiya, Moscow, 1987).Google Scholar
  19. 19.
    I. V. Kuleshov and V. G. Nikol’skii, Radiothermoluminescence of Polymers (Khimiya, Moscow, 1991) [in Russian].Google Scholar
  20. 20.
    V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of Strength in Solid Bodies (Nauka, Moscow, 1974) [in Russian].Google Scholar
  21. 21.
    A. M. Kaplan, N. I. Chekunaev, and V. G. Nikol’skii, Journal of Advances in Chemical Physics 2(2), 247–260 (2003).Google Scholar
  22. 22.
    V. P. Tamuzh and V. S. Kuksenko, Micromechanics of Failure of Polymer Materials (Zinatne, Riga, 1978) [in Russian].Google Scholar
  23. 23.
    K. Khait, in Rubber Recycling, Ed. by A. I. Isaev, K. Khait, and S. K. De (CRC, Taylor Francis, 2005), p. 121.Google Scholar
  24. 24.
    K. I. Zamaraev, R. F. Khairutdinov, and V. P. Zhdanov, Electron Tunneling in Chemistry (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  25. 25.
    V. I. Goldanskii, L. I. Trakhtenberg, and V. N. Flerov, Tunneling Phenomena in Chemical Physics New York: Gordon and Breach Science Publishers, 1989.Google Scholar
  26. 26.
    A. M. Kaplan, N. I. Chekunaev, V. G. Nikolskii, and V. I. Goldanskii, Chem. Phys. Lett. 240, 291 (1995).CrossRefGoogle Scholar
  27. 27.
    W. H. Hamill and K. Funabashi, Phys. Rev. 16, 5523 (1977).CrossRefGoogle Scholar
  28. 28.
    G. V. Buxton and K. Kemsley, J. Chem. Soc. Faraday Trans. I 717, 568 (1975).CrossRefGoogle Scholar
  29. 29.
    V. V. Barelko, I. M. Barkalov, V. I. Goldanskii, A. M. Zanin, and D. P. Kiryukhin, Russ. Chem. Rev. 59, 205 (1990).CrossRefGoogle Scholar
  30. 30.
    D. P. Kiryukhin, Doctoral Dissertation in Chemistry (Inst. Appl. Chem. Phys. RAS, Chernogolovka, 1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations