Skip to main content
Log in

Influence of additional metal ions on the ratio of conversion rates of intermediate products of the hydrolysis of adenosine-5′-triphosphoric acid catalyzed by the Cu2+ ion: 1. Experimental study of the influence of Mg2+ ions in the ascending branch of the dependence of the initial hydrolysis rate on pH

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The hydrolysis of the dimeric complex (CuATP2−)2 to CuADP and inorganic phosphate P i is irreversible. The main intermediate hydrolysis product, whose formation should be taken into account at relatively early steps of hydrolysis, is the pentacovalent intermediate IntK formed in parallel with the hydrolysis to CuADP and P i through the common intermediate product (CuATP2−)2OH (DOH) in step 1, which is the replacement of the nucleophile (OH) at the Cu2+ ion by OH at the positively charged phosphorus atom. The influence of the addition of Mg2+ ions is studied (depending on their concentration) on the rate constants of step 1 in the region of pH in the ascending branch of the dependence of the initial hydrolysis rate on pH at two values of pH: 6.48 and 6.70. This region of pH is sensitive to both the rate constant of DOH formation and the rate constants of step 1. The rate constant for the formation of DOH from D remains unchanged. An increase in the concentration of Mg2+ decreases the value of ATP conversion, above which the stationary hydrolysis regime is observed. The ratio [IntK]/[DOH] is higher when the stationary regime is attained. The applicability of the method proposed for the formation of the attacking nucleophile and the proposed sequence of steps to the enzymatic phosphoryl transfer processes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Wolcott and P. D. Boyer, Biochem. Biophys. Res. Commun. 57, 709 (1974).

    Article  CAS  Google Scholar 

  2. R. P. Kandpal, K. E. Stempel, and P. D. Boyer, Biochemystry 26, 1512 (1987).

    Article  CAS  Google Scholar 

  3. L. A. Syrtsova, Usp. Biol. Khim. 30, 130 (1989).

    CAS  Google Scholar 

  4. E. Z. Utyanskaya, B. V. Lidskii, M. G. Neigauz, and A. E. Shilov, Kinet. Catal. 41, 462 (2000).

    Article  CAS  Google Scholar 

  5. E. Z. Utyanskaya, B. V. Lidskii, S. V. Goryachev, and A. E. Shilov, Kinet. Catal. 47, 501 (2006).

    Article  CAS  Google Scholar 

  6. E. Z. Utyanskaya, B. V. Lidskii, M. G. Neigauz, and A. E. Shilov, Kinet. Catal. 47, 511 (2006).

    Article  CAS  Google Scholar 

  7. E. Z. Utyanskaya, B. V. Lidskii, M. G. Neigauz, and A. E. Shilov, Russ. J. Phys. Chem. B 3, 884 (2009).

    Article  Google Scholar 

  8. E. Z. Utyanskaya, Russ. J. Phys. Chem. B 4, 34 (2010).

    Article  Google Scholar 

  9. E. Z. Utyanskaya, B. V. Lidskii, and M. G. Neigauz, Kinet. Catal. 43, 316 (2002).

    Article  CAS  Google Scholar 

  10. E. Z. Utyanskaya, T. V. Michailova, A. O. Pavlov, and A. E. Shilov, ACH -Models Chem. 133, 65 (1996).

    CAS  Google Scholar 

  11. E. Z. Utyanskaya, A. E. Shilov, B. V. Lidskii, and M. G. Neihaus, ACH -Models Chem. 133, 365 (1996).

    CAS  Google Scholar 

  12. E. Z. Utyanskaya, A. G. Pavlovskii, N. I. Sosfenov, and A. E. Shilov, Kinet. Katal. 30, 1343 (1989).

    CAS  Google Scholar 

  13. H. Sigel, F. Hofstetter, R. B. Martin, R. M. Milburn, V. Scheller-Krattiger, and K. H. Scheller, J. Am. Chem. Soc. 106, 7935 (1984).

    Article  CAS  Google Scholar 

  14. H. Sigel, Coord. Chem. Rev. 100, 453 (1990).

    Article  CAS  Google Scholar 

  15. H. Sigel, Metal-DNA Chemistry, Ed. by T. D. Tullius (Am. Chem. Soc., Washington, 1989).

    Google Scholar 

  16. D. H. Buisson and H. Sigel, Biochim.Biophys. Acta 343, 45 (1974).

    Article  CAS  Google Scholar 

  17. H. Sigel, Chem. Soc. Rev. 22, 255 (1993).

    Article  CAS  Google Scholar 

  18. S. S. Massoud and R. M. Milburn, J. Inorg. Biochem. 39, 337 (1990).

    Article  Google Scholar 

  19. F. Tafesse, S. S. Massoud, and R. M. Milburn, Inorg. Chem. 32, 1864 (1993).

    Article  CAS  Google Scholar 

  20. S. S. Massoud, J. Inorg. Biochem. 55, 183 (1994).

    Article  CAS  Google Scholar 

  21. E. Z. Utyanskaya, A. O. Pavlov, E. M. Orekhova, and I. I. Lapidus, Kinet. Catal. 32, 307 (1991).

    Google Scholar 

  22. G. P. Haight, Coord. Chem. Rev. 79, 293 (1987).

    Article  CAS  Google Scholar 

  23. E. Z. Utyanskaya, B. V. Lidskii, M. G. Neihaus, and A. E. Shilov, React. Kinet. Catal. Lett. 54, 431 (1995).

    Article  CAS  Google Scholar 

  24. C. R. Bagshaw and D. R. Trentham, Biochem. J. 141, 333 (1974).

    Google Scholar 

  25. P. D. Boyer, Proc. Natl. Acad. Sci. USA, 72, 2592 (1975).

    Article  Google Scholar 

  26. J. Cordenwener, A. ten Asbroek and H. Wassink, R. R. Eady, and C. Veeger, Eur. J. Biochem. 162, 265 (1987).

    Article  Google Scholar 

  27. M. G. Duyvis, R. E. Mensink, H. Wassink, and H. Haaker, Biochim. Boiphys. Acta 1320, 34 (1997).

    Article  CAS  Google Scholar 

  28. S. Maritano, S. A. Fairhurst, and R. R. Eady, J. Biol. Inorg. Chem. 6, 590 (2001).

    Article  CAS  Google Scholar 

  29. A. L. Buchachenko, D. N. Kuznetsov, S. E. Arkhangel’skii, M. A. Orlova, A. A. Markaryan, A. G. Berdieva, and P. Z. Khasigov, Dokl. Biochem. Biophys. 396, 197 (2004).

    Article  CAS  Google Scholar 

  30. J. P. Froehlich, R. W. Albers, G. J. Koval, R. Goebel, and M. J. Berman, Biol. Chem. 251, 2186 (1976).

    CAS  Google Scholar 

  31. F. H. Westheimer, Org. Chem. 42–2, 229 (1980).

    Google Scholar 

  32. L. A. Syrtsova, I. A. Tukhvatulin, N. S. Goryachev, and N. I. Shkondina, Izv. AN, Ser. Khim. 55, 755 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Lidskii.

Additional information

Original Russian Text © E.Z. Utyanskaya, B.V. Lidskii, 2012, published in Khimicheskaya Fizika, 2012, Vol. 31, No. 9, pp. 35–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utyanskaya, E.Z., Lidskii, B.V. Influence of additional metal ions on the ratio of conversion rates of intermediate products of the hydrolysis of adenosine-5′-triphosphoric acid catalyzed by the Cu2+ ion: 1. Experimental study of the influence of Mg2+ ions in the ascending branch of the dependence of the initial hydrolysis rate on pH. Russ. J. Phys. Chem. B 6, 601–612 (2012). https://doi.org/10.1134/S199079311205017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311205017X

Keywords

Navigation