Russian Journal of Physical Chemistry B

, Volume 6, Issue 5, pp 626–633 | Cite as

Simulation of thermal decomposition of a polymer at random scissions of C-C bonds

  • A. A. Koptelov
  • Yu. M. Milekhin
  • Yu. N. Baranets
Chemical Physics of Polymer Materials


A mathematical formulation of the polymer thermal decomposition model at random scissions of C-C bonds in the backbone is presented. The model is based on ideas about a macrokinetic character of the observed process PolymerGaseous products, and the thermofluctuation nature of the bond scission. The suggested approach makes it possible to calculate the decomposition rate in a wide pressure range at any initial molecular weight distribution of the polymer. As an example, a comparison of the calculation results for temperature-time dependences of the conversion degree and decomposition rate with experimental data obtained in isothermal and non-isothermal regimes is performed for linear polyethylene.


polyethylene thermal decomposition pressure molecular weight distribution activation energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Peterson, S. Vyazovkin, and C. A. Wight, Macromol. Chem. 202, 775 (2001).CrossRefGoogle Scholar
  2. 2.
    I. A. Koptelov and S. V. Karyazov, Plast. Massy, No. 7, 24 (2008).Google Scholar
  3. 3.
    S. Madorskii, Thermal Degradation of Organic Polymers, Ed. by S. R. Rafikov (Wiley, New York, 1964; Mir, Moscow, 1967).Google Scholar
  4. 4.
    J. D. Peterson, S. Vyazovkin, and C. A. Wight, J. Phys. Chem. 103, 8087 (1999).CrossRefGoogle Scholar
  5. 5.
    A. A. Koptelov, Yu. M. Milekhin, and Yu. N. Baranets, Russ. J. Appl. Chem. 82, 2047 (2009).CrossRefGoogle Scholar
  6. 6.
    A. A. Koptelov and I. A. Koptelov, Polym. Sci., Ser. B 51, 313 (2009).CrossRefGoogle Scholar
  7. 7.
    V. N. Likhachev, T. Yu. Astakhova, and G. A. Vinogradov, Khim. Fiz. 3, 517 (2009).Google Scholar
  8. 8.
    O. Saito, J. Phys. Soc. Jpn. 13, 198 (1958).CrossRefGoogle Scholar
  9. 9.
    K. V. Popov and V. D. Knyazev, in Proceedings of the Eastern State Fall Technical Meeting Chemical and Physical Processes in Combustion, Virginia, United States, 2007 (Curran, Red Hook, 2008). Google Scholar
  10. 10.
    Yu. K. Godovskii, Heat Physics of Polymers (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  11. 11.
    S. Vyazovkin and N. Sbirrazzuoli, Macromol. Rapid Commun. 27, 1515 (2006).CrossRefGoogle Scholar
  12. 12.
    R. W. J. Westerhout, J. Waanders, J. A. M. Kuipers, and W. P. M. van Swaaij, Ind. Eng. Chem. Res. 36, 1955 (1997).CrossRefGoogle Scholar
  13. 13.
    P. Gaca, M. Drzewiecka, W. Kaleta, H. Kozubek, and K. Nowinska, Pol. J. Environ. Stud. 17, 25 (2008).Google Scholar
  14. 14.
    V. J. Fernandes, A. S. Araujo, and G. J. T. Fernandes, J. Therm. Anal. 49, 255 (1997).CrossRefGoogle Scholar
  15. 15.
    L. Sojak, R. Kubinec, H. Jurdakova, and M. Bajus, Pet. Coal. 48, 1 (2006).Google Scholar
  16. 16.
    T. A. Iida, K. Honda, and H. Nozaki, Bull. Chem. Soc. Jpn. 46, 1480 (1973).CrossRefGoogle Scholar
  17. 17.
    Z. Gao, I. Amasaki, T. Kaneko, and M. Nakada, Polym. Degrad. Stab. 81, 125 (2003).CrossRefGoogle Scholar
  18. 18.
    V. A. Kireev, Course on Physical Chemistry (Khimiya, Moscow, 1975) [in Russian].Google Scholar
  19. 19.
    Physical Values: Guide, Eds. by I. S. Grigor’ev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991), pp. 254–329 [in Russian].Google Scholar
  20. 20.
    A. A. Koptelov, Yu. M. Milekhin, and O. F. Shlenskii, Polym. Sci., Ser. A 47, 948 (2005).Google Scholar
  21. 21.
    B. Dickens, J. Polym. Sci.: Polym. Chem. Ed. 20, 1065 (1982).CrossRefGoogle Scholar
  22. 22.
    O. Saito, H. Y. Kang, and M. Dole, J. Chem. Phys. 46, 3607 (1967).CrossRefGoogle Scholar
  23. 23.
    J. Rychly and L. Richla, J. Therm. Anal. 35, 77 (1989).CrossRefGoogle Scholar
  24. 24.
    D. A. Costa, J. G. A. P. Filho, M. Embirucu, M. J. B. Souza, A. S. Araujo, H. Oliveira, and T. F. Gomes, in Proceedings of the 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering, Rio de Janeiro, Brazil, 2005.
  25. 25.
    I. Kayacan and O. M. Dogan, Energy Sources, Part A 30, 385 (2008).CrossRefGoogle Scholar
  26. 26.
    G. J. T. Fernandes, V. J. Fernandes, and A. S. Araujo, Catal. Today 75, 233 (2002).CrossRefGoogle Scholar
  27. 27.
    A. A. Koptelov and S. V. Karyazov, Dokl. Phys. Chem. 389, 101 (2003).CrossRefGoogle Scholar
  28. 28.
    A. A. Koptelov, Yu. M. Milekhin, and S. A. Gusev, Dokl. Phys. Chem. 416, 265 (2007).CrossRefGoogle Scholar
  29. 29.
    A. A. Koptelov, Yu. M. Milekhin, D. N. Sadovnichii, and N. I. Shishov, High Temp. 46, 261 (2008).CrossRefGoogle Scholar
  30. 30.
    S. R. Urzendowski and A. H. Guenther, J. Therm. Anal. 3, 379 (1971).CrossRefGoogle Scholar
  31. 31.
    A. K. Burnham and R. L. Braun, Energy Fuels 13, 1 (1999).CrossRefGoogle Scholar
  32. 32.
    P. M. D. Benoit, R. G. Ferrillo, and A. H. Granzov, J. Therm. Anal. 30, 869 (1985).CrossRefGoogle Scholar
  33. 33.
    H. A. Schneider, J. Therm. Anal. 40, 677 (1993).CrossRefGoogle Scholar
  34. 34.
    R. Simha and L. A. Wall, J. Phys. Chem. 56, 707 (1952).CrossRefGoogle Scholar
  35. 35.
    T. Ozava, J. Therm. Anal. 2, 301 (1970).CrossRefGoogle Scholar
  36. 36.
    S. Vyazovkin, Int. J. Chem. Kinet. 28, 95 (1996).CrossRefGoogle Scholar
  37. 37.
    S. Vyazovkin, J. Comput. Chem 18, 393 (1997).CrossRefGoogle Scholar
  38. 38.
    S. Vyazovkin and D. Dollimore, J. Chem. Inf. Comp. Sci. 36, 42 (1996).Google Scholar
  39. 39.
    S. Vyazovkin and C. A. Wight, J. Phys. Chem. A 101, 8279 (1997).CrossRefGoogle Scholar
  40. 40.
    S. Vyazovkin and C. A. Wight, Chem. Mater. 11, 3386 (1999).CrossRefGoogle Scholar
  41. 41.
    T. Ozava, Bull. Chem. Soc. Jpn. 38, 1881 (1965).CrossRefGoogle Scholar
  42. 42.
    J. H. Flinn and L. A. Wall, J. Res. Natl. Bur. Stand., Sect. A 70, 487 (1966).Google Scholar
  43. 43.
    S. Vyazovkin, J. Comput. Chem. 22(2), 178 (2001).CrossRefGoogle Scholar
  44. 44.
    H. Friedman, J. Polym. Sci., Ser. C 6, 183 (1964).CrossRefGoogle Scholar
  45. 45.
    J. M. Criado, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, J. Therm. Anal. Calorim. 92, 199 (2008).CrossRefGoogle Scholar
  46. 46.
    A. K. Galvey, Thermochim. Acta 397, 249 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Koptelov
    • 1
  • Yu. M. Milekhin
    • 1
  • Yu. N. Baranets
    • 1
  1. 1.The Federal Center for Dual-Use Technologies “Soyuz”Dzerzhinskii, Moscow regionRussia

Personalised recommendations