Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 4, pp 455–457 | Cite as

Ratio between phase and energy intramolecular vibrational relaxation times of polyatomic anions in solutions of electrolytes

  • G. P. MikhailovEmail author
Structure of Chemical Compounds. Spectroscopy

Abstract

A comparative analysis of intramolecular vibrational relaxation times of polyatomic anions in solutions of electrolytes and vibrational energy relaxation times was performed. Vibrational relaxation times were calculated by analyzing the form of isotropic Raman scattering bands. The conclusion was drawn that the main process responsible for the formation of the isotropic contour of Raman symmetrical stretching vibration bands of anions in solutions of electrolytes was vibrational dephasing. Because of the formation of ion-molecular H-bonds, vibrational dephasing and energy relaxation times decreased substantially differently.

Keywords

vibrational dephasing energy relaxation time Raman spectroscopy polyatomic anions ionmolecular H-bond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Buchachenko, Usp. Khim. 48, 1713 (1979).CrossRefGoogle Scholar
  2. 2.
    J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Ann. Rev. Phys. Chem. 45, 519 (1994).CrossRefGoogle Scholar
  3. 3.
    A. H. Zewail, Pure Appl. Chem. 72, 2219 (2000).CrossRefGoogle Scholar
  4. 4.
    D. von der Linde, Top. Appl. Phys. 18, 203 (1977).CrossRefGoogle Scholar
  5. 5.
    M. J. French and D. A. Long, Mol. Spectrosc. 4, 225 (1976).CrossRefGoogle Scholar
  6. 6.
    A. Lauberau, in Proceedings of the 5th International Conference on Raman Scattering (Freiburg, 1976), p. 353.Google Scholar
  7. 7.
    A. Lauberau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).CrossRefGoogle Scholar
  8. 8.
    J. P. Heritage, Appl. Phys. Lett. 34, 470 (1979).CrossRefGoogle Scholar
  9. 9.
    I. S. Perelygin and G. P. Mikhailov, Khim. Fiz. 7, 880 (1988).Google Scholar
  10. 10.
    I. S. Perelygin and G. P. Mikhailov, Khim. Fiz. 30, 225 (1989).Google Scholar
  11. 11.
    I. S. Perelygin and G. P. Mikhailov, Khim. Fiz. 8, 740 (1989).Google Scholar
  12. 12.
    I. S. Perelygin, G. P. Mikhailov, and S. V. Tuchkov, J. Mol. Struct. 381, 189 (1996).CrossRefGoogle Scholar
  13. 13.
    G. P. Mikhailov and S. V. Tuchkov, Nauch.-Tekh. Vestn. SPbGPU, Fiz.-Mat. Nauk 6, 91 (2008).Google Scholar
  14. 14.
    G. P. Mikhailov, Doctoral Dissertation in Mathematics and Physics (UGATU, Ufa, 2010).Google Scholar
  15. 15.
    S. A. Akhmanov and N. I. Koroteev, Nonlinear Optics Methods in Spectroscopy of Light Scattering: Active Spectroscopy of Light Scattering (Nauka, Moscow, 1981), p. 127 [in Russian].Google Scholar
  16. 16.
    K. Dahl, G. M. Sando, D. M. Fox, et al., J. Chem. Phys. 123, 084504-4 (2005).CrossRefGoogle Scholar
  17. 17.
    C. Houchins, D. Weidinger, and J. C. Owrutsky, J. Phys. Chem. A 114, 6569 (2010).CrossRefGoogle Scholar
  18. 18.
    E. J. Heilweil, R. Moore, G. Rothenberger, S. Velsko, and R. M. Hochstrasser, Laser Chem 3, 109 (1983).CrossRefGoogle Scholar
  19. 19.
    Q. Zhong and J. C. Owrutsky, Chem. Phys. Lett. 383, 176 (2004).CrossRefGoogle Scholar
  20. 20.
    M. Li, J. C. Owrutsky, M. Sarisky, et al., J. Chem. Phys. 98, 5499 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Ufa State Technical University of AviationUfa, BashkortostanRussia

Personalised recommendations