Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 368–375 | Cite as

Kinetics of the oxidation of an electroexplosion iron nanopowder during heating in air

  • A. V. KorshunovEmail author
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

The regularities of the oxidation of electroexplosion iron nanopowder, produced by the wire electric explosion, heated in air under conditions of linearly increasing temperature and in the isothermal mode are examined. The oxidation process under conditions of linear heating is demonstrated to occur stepwise due to the combined influence of the fractional composition of the powder, its phase composition, and the structure of the oxide layer formed on the surface of the particles. It is shown that, under isothermal conditions (250–600°C), the oxidation of the nanopowder, as opposed to micron-sized powders, obeys a linear law and proceeds in the kinetic regime with E a = 100 ± 7 kJ/mol. The conditions of thermogravimetry analysis at which the thermal self-ignition of the nanopowder occurs are determined. Based on the numerical evaluation of the sample surface heating parameter, the experimentally measured critical temperature is verified.

Keywords

iron coarse-grained and nanosized powders oxidation in air thermal self-ignition thermogravimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Brown, M. J. Tribelhorn, and M. G. Blenkinsop, J. Therm. Anal. Calorim. 40, 1123 (1993).CrossRefGoogle Scholar
  2. 2.
    Yu. M. Gorokhov, Powder Metallurgy Metal Ceram. 3, 82 (1964).CrossRefGoogle Scholar
  3. 3.
    O. Kubashevski and B. Hopkins, Oxidation of Metals and Alloys (Butterworth, London, 1962; Metallurgiya, Moscow, 1965).Google Scholar
  4. 4.
    R. Y. Chen and W. Y. Yuen, Oxid. Met. 59, 433 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Lee and R. A. Rapp, Oxid. Met. 27, 187 (1987).CrossRefGoogle Scholar
  6. 6.
    N. Bertrand, C. Desgranges, D. Poquillon, et al., Oxid. Met. 73, 139 (2010).CrossRefGoogle Scholar
  7. 7.
    C. Juricic, H. Pinto, D. Cardinali, et al., Oxid. Met. 73, 115 (2010).CrossRefGoogle Scholar
  8. 8.
    L. Del Campo, R. Perez-Saez, and M. Tello, Corros. Sci. 50, 194 (2008).CrossRefGoogle Scholar
  9. 9.
    R. J. Hussey, D. Caplan, and M. J. Graham, Oxid. Met. 15, 421 (1981).CrossRefGoogle Scholar
  10. 10.
    R. J. Hussey and M. Cohen, Corros. Sci. 11, 699 (1971).CrossRefGoogle Scholar
  11. 11.
    R. J. Hussey and M. Cohen, Corros. Sci. 11, 713 (1971).CrossRefGoogle Scholar
  12. 12.
    State Diagrams of Double Metallic Systems: A Manual, in 3 vols., Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), vol. 2, p. 522 [in Russian].Google Scholar
  13. 13.
    S. Rebeyrat, J. Grosseau-Poussard, J. Dinhut, and P. Renault, Thin Solid Films 379, 139 (2000).CrossRefGoogle Scholar
  14. 14.
    G. Zhygotsky, J. Therm. Anal. Calorim. 62, 575 (2000).CrossRefGoogle Scholar
  15. 15.
    T. A. Emel’yanova and A. S. Semenova, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 5, 48 (2005).Google Scholar
  16. 16.
    V. An, E. Ivchenko, and Ch. de Izarra, Mater. Lett. 62, 2211 (2008).CrossRefGoogle Scholar
  17. 17.
    D. Wen, P. Song, K. Zhang, and J. Qian, J. Chem. Technol. Biotechnol. 86, 375 (2011).CrossRefGoogle Scholar
  18. 18.
    D. V. Tikhonov, Candidate’s Dissertation in Technical Science (Tomsk. Ped. Univ., Tomsk, 1999).Google Scholar
  19. 19.
    A. A. Rusakov, X-Ray Diffraction Analysis of Metals (Atomizdat, Moscow, 1977) [in Russian].Google Scholar
  20. 20.
    D. Wolf, Grain Boundaries in Nanocrystalline Materials. Handbook of Materials Modeling (Springer, New York, 2005), p. 2055.Google Scholar
  21. 21.
    A. Ya. Rozovskii, Kinetics of Topochemical Reactions (Khimiya, Moscow, 1974) [in Russian].Google Scholar
  22. 22.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations