Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 441–447 | Cite as

A computer study of the Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles

  • A. E. GalashevEmail author
Chemical Physics of Nanomaterials

Abstract

The Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles were calculated using the molecular dynamics method. The spectrum of (SiO2)86 had three broad bands only, whereas the Raman spectrum of (GaN)129 contained a large number of overlapping bands. The form of the Raman spectrum of (GaN)54(SiO2)50 was determined by the arrangement of the GaN and SiO2 components in it. The nanoparticle with a GaN nucleus had a continuous fairly smooth spectrum over the frequency range 0 ≤ ω ≤ 600 cm−1, whereas the spectrum of the nanoparticle with a SiO2 nucleus contained well-defined bands caused by vibrations of groups of atoms of different kinds and atoms of the same kind.

Keywords

silicon dioxide molecular dynamics gallium nitride nanoparticles Raman spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy, 20th ed. (Wiley, New York, 1985).Google Scholar
  2. 2.
    R. L. Folk and J. S. Pittman, J. Sediment. Petrol. 41, 1045 (1971).Google Scholar
  3. 3.
    P. F. McMillan and A. C. Hess, Phys. Chem. Minerals 17, 97 (1990).CrossRefGoogle Scholar
  4. 4.
    A. Jayaraman, D. L. Wood, and R. G. Maines, Sr., Phys. Rev. B 35, 8316 (1987).CrossRefGoogle Scholar
  5. 5.
    M. Ramsteiner, J. Menniger, O. Brandt, et al., Appl. Phys. Lett. 69, 1276 (1996).CrossRefGoogle Scholar
  6. 6.
    H. Siegle, I. Loa, P. Thurian, et al., Appl. Phys. Lett. 70, 909 (1997).CrossRefGoogle Scholar
  7. 7.
    D.-S. Jiang, M. Ramsteiner, K.-H. Ploog, et al., Appl. Phys. Lett. 72, 365 (1998).CrossRefGoogle Scholar
  8. 8.
    H. Siegle, A. Kaschner, A. Hoffmann, et al., Phys. Rev. B 58, 13619 (1998).CrossRefGoogle Scholar
  9. 9.
    G. Kaczmarczyk, A. Kaschner, A. Hoffmann, et al., Phys. Rev. B 61, 5353 (2000).CrossRefGoogle Scholar
  10. 10.
    T. Kozawa, T. Kachi, H. Kano, et al., J. Appl. Phys. 75, 1098 (1994).CrossRefGoogle Scholar
  11. 11.
    T. S. Zheleva, W. M. Ashmawi, O.-H. Nam, et al., Appl. Phys. Lett. 74, 2492 (1999).CrossRefGoogle Scholar
  12. 12.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).CrossRefGoogle Scholar
  13. 13.
    A. Yasukawa, Jpn. Soc. Mech. Eng. 39, 313 (1996).Google Scholar
  14. 14.
    S. R. Billeter, A. Curioni, D. Fischer, et al., Phys. Rev. B 73, 155329 (2006).CrossRefGoogle Scholar
  15. 15.
    Y. Nishidate and G. P. Nikishkov, Comp. Model. Eng. Sci. 26, 91 (2008).Google Scholar
  16. 16.
    V. Petkov, M. Gateshki, J. Choi, et al., J. Mater. Chem. 15, 4654 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Munetoh, T. Motooka, K. Moriguchi, et al., Comp. Mater. Sci. 39, 334 (2007).CrossRefGoogle Scholar
  18. 18.
    A. Le Bail, J. Appl. Crystallogr. 38, 389 (2005).CrossRefGoogle Scholar
  19. 19.
    W. B. Bosma, L. E. Fried, and S. Mukamel, J. Chem. Phys. 98, 4413 (1993).CrossRefGoogle Scholar
  20. 20.
    Manual for Chemists, Vol. 1, Ed. by B. P. Nikol’skii (Khimiya, Leningrad, 1971) [in Russian].Google Scholar
  21. 21.
    L. X. Dang and T.-M. Chang, J. Chem. Phys. 106, 8149 (1997).CrossRefGoogle Scholar
  22. 22.
    F. Bresme, J. Chem. Phys. 115, 7564 (2001).CrossRefGoogle Scholar
  23. 23.
    M. Neumann, J. Chem. Phys. 82, 5663 (1985).CrossRefGoogle Scholar
  24. 24.
    C. Stampfl and C. van de Walle, Phys. Rev. B 59, 5521 (1999).CrossRefGoogle Scholar
  25. 25.
    J. Serrano, A. Rubio, E. Hernandez, et al., Phys. Rev. B 62, 16612 (2000).CrossRefGoogle Scholar
  26. 26.
    K. J. Kingma and R. J. Hemley, Am. Mineralog. 79, 269 (1994).Google Scholar
  27. 27.
    L. I. Berezhinsky, V. P. Maslov, V. V. Tetyorkin, et al., Semicond. Phys. Quantum Electron. Optoelectron. 8, 37 (2005).Google Scholar
  28. 28.
    N. Schonbachler and W. Luthy, Measurements of Raman Lines in Silica, Dimethyl-Methylphosphonate and Methyl Salicylate (Univ. of Bern Press, Bern, 2010). http://www.iap.unibe.ch/publications/download/3384/en/ Google Scholar
  29. 29.
    M. Chligui, G. Guimbretiere, A. Canizares, et al., Phys. Rev. B (2010, in press). http://hal.archives-ouvertes.fr/hal-00520823/en/
  30. 30.
    R.-M. Wang, G.-D. Chen, J.-Y. Lin, et al., Front. Phys. Chin. 1, 112 (2006).CrossRefGoogle Scholar
  31. 31.
    J. Toulouse and P. Tick, J. Non-Cryst. Solids 222, 335 (1997).CrossRefGoogle Scholar
  32. 32.
    V. N. Bessolov, Yu. V. Zhilyaev, E. V. Konenkova, et al., Semiconductors 37, 940 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Industrial Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations