Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 390–396 | Cite as

Influence of metal nanopowders on the sensitivity of explosives to a high-voltage electric discharge. A fractal-percolation approach

  • V. A. Bragin
  • S. A. Dushenok
  • V. G. Kulikov
  • G. G. SavenkovEmail author
  • G. V. Semashkin
Combustion, Explosion, and Shock Waves


The initiation of detonation in pressed finely dispersed explosives by a high-voltage electric discharge is studied. It is shown that this type of initiation can be greatly simplified by adding to the explosive metal (conductive) additives with a high specific heat capacity and thermal conductivity. It is established that the parameters of the initiating electric discharge depend on the fractal structure of the nanocrystalline explosive.


percolation initiation nanocrystals detonation high electric discharge fractal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Physics of Explosions, Ed. by K. P. Stanyukovich (Nauka, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    V. V. Danilenko, Explosion: Physics, Techniques, Technologies (Energoatomizdat, Moscow, 2010) [in Russian].Google Scholar
  3. 3.
    V. V. Sten’gach, Fiz. Goreniya Vzryva, No. 1, 113 (1970).Google Scholar
  4. 4.
    M. A. Mel’nikov, A. I. Gavrilin, N. I. Dimova, and A. L. Kalashnikov, Zh. Fiz. Khim. 49, 2321 (1970).Google Scholar
  5. 5.
    Yu. A. Zakharov and Yu. N. Sukhushin, Izv. Tomsk. Politekh. Inst. 251, 213 (1970).Google Scholar
  6. 6.
    Yu. N. Sukhushin, Yu. A. Zakharov, and G. A. Rappoport, Izv. Tomsk. Politekh. Inst. 251, 219 (1970).Google Scholar
  7. 7.
    V. V. Andreev, Fiz. Goreniya Vzryva, No. 2, 87 (1993).Google Scholar
  8. 8.
    M. Roux and B. C. Auzanneau, Propellants, Explos., Pyrotech. 18(6), 317 (1993).CrossRefGoogle Scholar
  9. 9.
    Yu. N. Vershinin, Electron-Thermal and Detonation Processes during Electrical Breakdown of Solid Dielectrics (Ural Branch RAN, Yekaterinburg, 2000) [in Russian].Google Scholar
  10. 10.
    B. I. Shklovskii and A. L. Efros, Sov. Phys. Usp. 18, 845 (1975).CrossRefGoogle Scholar
  11. 11.
    B. B. Mandelbrot, Fractal Geometry of Nature (W.H. Freeman, New York, 1982; Inst. of Computer Studies, Izhevsk, 2010).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  13. 13.
    A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  14. 14.
    I. M. Sokolov, Sov. Phys. Usp. 29, 924 (1986).CrossRefGoogle Scholar
  15. 15.
    V. V. Zosimov and L. V. Lyamshev, Phys. Usp. 38, 347 (1995).CrossRefGoogle Scholar
  16. 16.
    M. E. Levinshtein, B. I. Shklovskii, M. S. Shur, and A. L. Efros, Sov. Phys. JETP 42, 197 (1975).Google Scholar
  17. 17.
    I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].Google Scholar
  18. 18.
    S. A. Rashkovskii, Fiz. Goreniya Vzryva 41(1), 41 (2005).Google Scholar
  19. 19.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. A. Bragin
    • 1
  • S. A. Dushenok
    • 2
  • V. G. Kulikov
    • 2
  • G. G. Savenkov
    • 1
    Email author
  • G. V. Semashkin
    • 2
  1. 1.Research Institute “Poisk”Murino, Leningradskaya oblastRussia
  2. 2.Special Design Bureau “Tekhnolog”St. PetersburgRussia

Personalised recommendations