Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 4, pp 543–552 | Cite as

Microphase separation in a melt of graft copolymers formed by blocks with different grafting densities

  • N. Yu. Kuz’minykh
  • M. A. AlievEmail author
Chemical Physics of Polymer Materials

Abstract

The weak-segregation phase behavior of a monodisperse melt of a binary graft copolymer the macromolecules of which consist of two blocks with different densities of grafting of side chains is investigated. The length of the side chains in each block is assumed to be the same. Analysis of the structure factor of the system indicates the possibility of formation of two-scale structures in the melt. The realized scales differ significantly from each other and correspond to a phase separation between the blocks and between the monomeric units that form the repeating fragment of the graft copolymer. Classification diagrams are constructed, which describe the scale of the structures formed in the melt at different values of the parameters of the chemical structure of the macromolecules.

Keywords

microphase separation copolymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. W. Hamley, The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).Google Scholar
  2. 2.
    M. Maldovan, A. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 165123 (2002).CrossRefGoogle Scholar
  3. 3.
    C. Park, J. Yoon, and E. L. Thomas, Polymer 44, 6725 (2003).CrossRefGoogle Scholar
  4. 4.
    I. W. Hamley, Nanotecnology 14, R39 (2003).CrossRefGoogle Scholar
  5. 5.
    N. P. Balsara and H. Hahn, in The Chemistry of Nanostructured Materials, Ed. by P. Yang (World Scientific, Singapore, 2003), p. 317.CrossRefGoogle Scholar
  6. 6.
    U. Breiner, U. Krappe, E. L. Thomas, and R. Stadler, Macromolecules 31, 135 (1998).CrossRefGoogle Scholar
  7. 7.
    J. Ruokolainen, R. Makinen, M. Torkkeli, T. Makela, R. Serimaa, G. ten Brinke, and O. Ikkala, Science (Washington, DC, U. S.) 280, 557 (1998).CrossRefGoogle Scholar
  8. 8.
    J. Ruokolainen, G. ten Brinke, and O. Ikkala, Adv. Mater. 11, 777 (1999).CrossRefGoogle Scholar
  9. 9.
    J. Ruokolainen, M. Saariaho, O. Ikkala, G. ten Brinke, E. L. Thomas, M. Torkkeli, and R. Serimaa, Macromolecules 32, 1152 (1999).CrossRefGoogle Scholar
  10. 10.
    V. Abetz and P. F. W. Simon, Adv. Polym. Sci. 189, 125 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Werner and G. H. Fredrickson, J. Polym. Sci., Part B: Polym. Lett. 35, 849 (1997).Google Scholar
  12. 12.
    I. Ya. Erukhimovich, V. Abetz, and R. Stadler, Macromolecules 30, 7435 (1997).CrossRefGoogle Scholar
  13. 13.
    E. W. Cochran, D. C. Morse, and F. S. Bates, Macromolecules 36, 782 (2003).CrossRefGoogle Scholar
  14. 14.
    J. Masuda, A. Takano, Y. Nagata, A. Noro, and Y. Matsushita, Phys. Rev. Lett. 97, 098301 (2006).CrossRefGoogle Scholar
  15. 15.
    Y. Matsushita, Macromolecules 40, 771 (2007).CrossRefGoogle Scholar
  16. 16.
    G. ten Brinke, J. Ruokolainen, and O. Ikkala, Adv. Pol. Sci. 207, 113 (2007).CrossRefGoogle Scholar
  17. 17.
    R. J. Nap, C. Kok, G. ten Brinke, and S. I. Kuchanov, Eur. Phys. J. E: Soft Matter Biol. Phys. 4, 515 (2001).CrossRefGoogle Scholar
  18. 18.
    R. J. Nap and G. ten Brinke, Macromolecules 35, 952 (2002).CrossRefGoogle Scholar
  19. 19.
    R. J. Nap, PhD Thesis (Groningen Univ., Groningen, 2003).Google Scholar
  20. 20.
    L. Wang, J. Lin, and L. Zhang, Langmuir 25, 4735 (2009).CrossRefGoogle Scholar
  21. 21.
    R. J. Nap, I. Ya. Erukhimovich, and G. ten Brinke, Macromolecules 37, 4296 (2004).CrossRefGoogle Scholar
  22. 22.
    R. J. Nap, N. Sushko, G. ten Brinke, and I. Ya. Erukhimovich, Macromolecules 39, 6765 (2006).CrossRefGoogle Scholar
  23. 23.
    Yu. G. Smirnova, G. ten Brinke, and I. Ya. Erukhimovich, Polym. Sci., Ser. A 47, 430 (2005).Google Scholar
  24. 24.
    Yu. G. Smirnova, G. ten Brinke, and I. Ya. Erukhimovich, J. Chem. Phys. 124, 054907 (2006).CrossRefGoogle Scholar
  25. 25.
    Yu. G. Smirnova, PhD Thesis (Groningen University, Groningen, 2006).Google Scholar
  26. 26.
    Yu. A. Kriksin, I. Ya. Erukhimovich, P. G. Khalatur, Y. G. Smirnova, and G. ten Brinke, J. Chem. Phys. 128, 244903 (2008).CrossRefGoogle Scholar
  27. 27.
    Yu. A. Kriksin, I. Ya. Erukhimovich, Yu. G. Smirnova, P. G. Khalatur, and G. ten Brinke, J. Chem. Phys. 130, 204901 (2009).CrossRefGoogle Scholar
  28. 28.
    M. A. Aliev and N. Yu. Kuzminyh, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 80, 041801 (2009).CrossRefGoogle Scholar
  29. 29.
    V. Pichugin and S. I. Kuchanov, J. Stat. Mech., No. 7, 07009 (2005).Google Scholar
  30. 30.
    S. I. Kuchanov, V. Pichugin, and G. ten Brinke, e-Polymers, No. 12 (2006).Google Scholar
  31. 31.
    V. V. Palyulin and I. I. Potemkin, Polym. Sci., Ser. A 49, 473 (2007).CrossRefGoogle Scholar
  32. 32.
    V. V. Palyulin and I. I. Potemkin, J. Chem. Phys. 127, 124903 (2007).CrossRefGoogle Scholar
  33. 33.
    Y. Nagata, J. Masuda, A. Noro, D. Cho, A. Takano, and Y. Matsushita, Macromolecules 38, 10220 (2005).CrossRefGoogle Scholar
  34. 34.
    M. A. Konovalov, E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 130, 164903 (2009).CrossRefGoogle Scholar
  35. 35.
    I. I. Potemkin and V. V. Palyulin, Polym. Sci., Ser. A 51, 123 (2009).CrossRefGoogle Scholar
  36. 36.
    O. E. Perelstein, V. A. Ivanov, Yu. S. Velichko, P. G. Khalatur, A. R. Khokhlov, and I. I. Potemkin, Macromol. Rapid Commun. 28, 977 (2007).CrossRefGoogle Scholar
  37. 37.
    A. Shinozaki, D. Jasnow, and A. C. Balazs, Macromolecules 27, 2496 (1994).CrossRefGoogle Scholar
  38. 38.
    H. Benoit and G. Hadziioannou, Macromolecules 21, 1449 (1988).CrossRefGoogle Scholar
  39. 39.
    L. Leibler, Macromolecules 13, 1602 (1980).CrossRefGoogle Scholar
  40. 40.
    R. Holyst and T. A. Vilgis, Macromol. Theory Simul. 5, 573 (1996).CrossRefGoogle Scholar
  41. 41.
    I. Ya. Erukhimovich, in Nanostructured Soft Matter, Ed. by A. V. Zvelindovsky (Springer, Dordrecht, 2007), p. 327.CrossRefGoogle Scholar
  42. 42.
    S. I. Kuchanov, Macromol. Sympos. 252, 76 (2007).CrossRefGoogle Scholar
  43. 43.
    I. Ya. Erukhimovich, Polym. Sci. U.S.S.R 24, 2223 (1982).CrossRefGoogle Scholar
  44. 44.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Cornell, 1979).Google Scholar
  45. 45.
    S. I. Kuchanov and S. V. Panyukov, in Comprehensive Polymer Science, 2nd suppl., Ed. by G. Allen, (Pergamon, New York, 1996), p. 441.Google Scholar
  46. 46.
    M. A. Aliev and S. I. Kuchanov, Eur. Phys. J. B 43, 251 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations