Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 376–383 | Cite as

The kinetics and mechanism of reactions of aliphatic stable nitroxyl radicals with alkyl and peroxide radicals during styrene oxidation

  • E. M. PlissEmail author
  • I. V. Tikhonov
  • A. I. Rusakov
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

A kinetic study (EPR, microvolumometry), quantum-chemical analysis (DFT B3LYP/6-31G*), and kinetic simulation of the antioxidant activity of aliphatic stable nitroxyl radicals during styrene oxidation was performed. The key reactions constituting the detailed mechanism of the process were analyzed. It was shown that the inhibiting action of nitroxyl radicals was caused by their reaction not only with alkyl radicals but also with substrate peroxy radicals, which resulted in the regeneration of nitroxyl radicals in chain-termination steps.

Keywords

styrene stable nitroxyl radicals inhibited oxidation multiple chain termination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Mogilevich and E. M. Pliss, Oxidation and Oxidizing Polymerization of Unsaturated Compounds (Khimiya, Moscow, 1990) [in Russian].Google Scholar
  2. 2.
    J. P. Browlie and K. U. Ingold, Can. J. Chem. 45, 2427 (1967).CrossRefGoogle Scholar
  3. 3.
    E. M. Pliss and A. L. Aleksandrov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 753 (1977).Google Scholar
  4. 4.
    A. L. Aleksandrov, E. M. Pliss, and V. F. Shuvalov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 753 (1979).Google Scholar
  5. 5.
    M. S. Khloplyankina, A. L. Buchachenko, M. B. Neiman, and A. G. Vasil’eva, Kinet. Katal. 6, 394 (1965).Google Scholar
  6. 6.
    E. T. Denisov, Russ. Chem. Rev. 65, 505 (1996).CrossRefGoogle Scholar
  7. 7.
    J. A. Howard and K. U. Ingold, Can. J. Chem. 45, 785 (1967).CrossRefGoogle Scholar
  8. 8.
    V. V. Kharitonov and E. T. Denisov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 12, 2764 (1967).Google Scholar
  9. 9.
    A. L. Aleksandrov, Kinet. Katal. 28, 536 (1987).Google Scholar
  10. 10.
    E. M. Pliss, A. M. Grobov, M. G. Postnov, et al., Bashkir. Khim. Zh. 17(2), 14 (2010).Google Scholar
  11. 11.
    E. M. Pliss, A. M. Grobov, M. G. Postnov, et al., Bashkir. Khim. Zh. 17(2), 25 (2010).Google Scholar
  12. 12.
    D. Loshadkin, V. Roginsky, and E. Pliss, Int. J. Chem. Kinet. 34, 162 (2002).CrossRefGoogle Scholar
  13. 13.
    A. D. French, A.-M. Kelterer, G. P. Johnson, and M. K. Dowd, J. Mol. Struct. 556, 303 (2000).CrossRefGoogle Scholar
  14. 14.
    A. V. Sokolov and I. V. Utkin, “Kinetics — The Research Environment for Modeling the Kinetics of Chemical and Technological Processes,” Certificate of State Registration of the Computer Program No. 2008613092.Google Scholar
  15. 15.
    V. A. Roginskii, Zh. Org. Khim. 25, 449 (1987).Google Scholar
  16. 16.
    E. T. Denisov, Dev. Polym. Stab. 5, 23 (1982).Google Scholar
  17. 17.
    G. A. Kovtun, A. L. Aleksandrov, and V. A. Golubev, Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2197 (1974).Google Scholar
  18. 18.
    J. He, L. Li, and Y. Yang, Macromolecules 33, 2286 (2000).CrossRefGoogle Scholar
  19. 19.
    E. T. Denisov, Kinet. Katal. 36, 387 (1995).Google Scholar
  20. 20.
    E. T. Denisov, Kinet. Catal. 49, 313 (2008).CrossRefGoogle Scholar
  21. 21.
    D. H. Barton, V. N. le Gloahec, and J. Smith, Tetrahedron Lett. 39, 7483 (1998).CrossRefGoogle Scholar
  22. 22.
    T. Offer and A. Samuni, Free Radic. Biol. Med. 32, 872 (2002).CrossRefGoogle Scholar
  23. 23.
    S. Goldstein and A. Samuni, J. Phys. Chem. A 111, 1066 (2007).CrossRefGoogle Scholar
  24. 24.
    P. Stipa, J. Chem. Soc., Perkin Trans. 2, No. 9, 1793 (2001).Google Scholar
  25. 25.
    J. L. Hodgson and M. L. Coote, Macromolecules 43, 4573 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations