Skip to main content
Log in

Microwave radiation in the upper atmosphere of the earth during strong geomagnetic disturbances

  • Effect of External Factors on Physicochemical Transformations
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The influence of N2 and O2 molecules on spontaneous microwave radiation spectrum was studied over the decimeter range. This radiation appears in the D and E upper earth atmosphere layers during strong magnetic storms. It was shown to be caused by radiation transitions between medium-perturbed orbitally degenerate Rydberg atom and molecule states A** that occur without changes in the principal quantum number, δn = 0. The available experimental data were used to calculate the dependences of orbitally degenerate state populations on the density of medium and electron flux and temperature. Effective radiation bands were constructed for transitions between highly excited quasi-molecule levels A**N2 and A**O2. The emission spectrum was shown to be inhomogeneous and contain three frequency regions in which a noticeable decrease in the intensity of radiation occurred. The physical reason for the formation of these regions was a shift of the emission spectra of quasi-molecules containing unexcited N2 and O2 molecules. The frequency profiles of radiation intensity within these frequency regions were calculated as depending on the storm level. Radiation profiles were shown to noticeably change as the storm level increased, they strongly increased close to the right region edge corresponding to high transition frequencies. Nonmonotonic behavior of this profile in the middle of the lower region was observed; this was related to emission spectrum inhomogeneity. A sharp increase in radiation intensity as the magnetic storm level increased occurred in the region of frequencies situated close to the right edge of the upper region (50–100 GHz), which was most interesting for biophysical studies of the action of microwave radiation on living organisms during strong geomagnetic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).

    Article  CAS  Google Scholar 

  2. S. V. Avakyan, J. Opt. Technol. 72, 608 (2005).

    Article  CAS  Google Scholar 

  3. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma (Nauka, Moscow, 1982).

    Google Scholar 

  4. P. I. Gudzenko and S. I. Yakovlenko, Plasma Lasers (Atomizdat, Moscow, 1978).

    Google Scholar 

  5. Rydberg States of Atoms and Molecules, Eds. by R. Stebbings and F. Dunning (Cambridge Univ. Press, Cambridge, 1983; Mir, Moscow, 1985).

    Google Scholar 

  6. G. V. Golubkov and G. K. Ivanov, Rydberg States of Atoms and Molecules and Elementary Processes with their Participation (URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  7. G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Khim. Fiz. 14(8), 38 (1995).

    CAS  Google Scholar 

  8. G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 22(10), 25 (2003).

    CAS  Google Scholar 

  9. G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Sov. Phys. JETP 59, 1188 (1984).

    Google Scholar 

  10. G. V. Golubkov, M. G. Golubkov, and G. K. Ivanov, in The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring, Eds. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, New York, 2010).

    Google Scholar 

  11. A. S. Davydov, Theory of Atomic Nucleus (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  12. K. Takayanagi and S. Geltman, Phys. Rev. 128, A1003 (1965).

    Article  Google Scholar 

  13. A. Pavelev, T. Tsuda, K. Igarashi, et al., J. Atm. Sol.-Terr. Phys. 65, 59 (2003).

    Article  Google Scholar 

  14. K. S. Jacobsen, A. Pedersen, J. I. Moen, and T. A. Bekkeng, Measur. Sci. Technol. 21, 085902–1 (2010).

    Article  Google Scholar 

  15. N. V. Bakhmet’eva, I. I. Belikovich, L. M. Kagan, et al., Vestn. RFFI 3(53), 1 (2007).

    Google Scholar 

  16. J. Rurihara, T. Abe, K. Oyama, E. Griffin, et al., Earth Planets Space 58, 1123 (2006).

    Google Scholar 

  17. D. K. Sharma, P. K. Sharma, J. Rai, and S. C. Garg, Indian J. Radio Space Phys. 37, 319 (2008).

    Article  Google Scholar 

  18. B. M. Smirnov, The Weakly Ionized Gas Physics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  19. E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  20. F. I. Dalidchik and Yu. S. Sayasov, Sov. Phys. JETP 22, 212 (1965).

    Google Scholar 

  21. G. V. Golubkov, V. V. Egorov, and N. M. Kuznetsov, Sov. J. Plasma Phys. 5, 324 (1979).

    Google Scholar 

  22. K. I. Ogama, T. Abe, H. Mori, and J. Y. Lin, Ann. Geophys. 26, 533 (2008).

    Article  Google Scholar 

  23. M. A. El’yashevich, General Questions of Spectroscopy (URSS, Moscow, 2006) [in Russian].

    Google Scholar 

  24. G. V. Golubkov and M. G. Golubkov, in Proceedings of the 2nd International Conference on Atmosphere, Ionosphere, Safety Kaliningrad, 2010, p. 204.

  25. G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 19(3), 57 (2000).

    CAS  Google Scholar 

  26. G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Opt. Spectrosc. 80, 27 (1996).

    Google Scholar 

  27. J. Picart, A. Edmonds, MinhN. Tran, and R. Pullen, J. Phys. B: At. Mol. Phys. 12, 2781 (1979).

    Article  Google Scholar 

  28. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24(6), 3 (2005).

    Google Scholar 

  29. G. V. Golubkov and G. K. Ivanov, J. Exp. Theor. Phys. 77, 574 (1993).

    Google Scholar 

  30. A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  31. National Weather Service. Space Weather Prediction Center. www.swpc.noaa.gov/index.html.

  32. C. N. Noble and P. G. Burke, Phys. Rev. Lett. 68, 2011 (1992).

    Article  CAS  Google Scholar 

  33. W. Sun, M. A. Morrison, W. Isaacs, et al., Phys. Rev. A 52, 1229 (1995).

    Article  CAS  Google Scholar 

  34. C. Greenhow and W. V. Smith, J. Chem. Phys. 19, 1298 (1951).

    Article  CAS  Google Scholar 

  35. G. Zeiss and W. J. Meath, Mol. Phys. 33, 1155 (1977).

    Article  CAS  Google Scholar 

  36. P. Soven, J. Chem. Phys. 82, 3289 (1985).

    Article  CAS  Google Scholar 

  37. A. P. Cerruti, P. M. Kintner, D. E. Gary, et al., Space Weather 6, 81 (2008).

    Article  Google Scholar 

  38. S. P. Sit’ko, Yu. A. Skripnik, and A. F. Yanenko, The Hardware of Modern Quantum Medicine Technologies (FADA, Kiev, 1999) [in Russian].

    Google Scholar 

  39. D. J. Panagopoulos, N. Messini, A. Karabarounis, et al., Biochem. Biophys. Res. Commun. 273, 634 (2000).

    Article  Google Scholar 

  40. D. J. Panagopoulos and L. H. Margaritis, in Biological Effects of Electromagnetic Fields, Ed. by P. Stavroulakis (Springer-Verlag, Berlin, Heidelberg, New York, 2003), p. 175.

    Google Scholar 

  41. Yu. B. Kudryashov, Yu. F. Perov, and A. B. Rubin, Radio Frequency and Microwave Electromagnetic Radiations (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  42. A. B. Rubin, S. I. Aksenov, A. A. Bulychev, et al., Biophysics (Mosk. Gos. Univ., Moscow, 2008) [in Russian].

    Google Scholar 

  43. I. R. Knyazeva, M. A. Medvedev, L. P. Zharkova, et al., Byul. Sib. Med. 1, 24 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Golubkov.

Additional information

Original Russian Text © G.V. Golubkov, M.G. Golubkov, M.I. Manzhelii, 2012, published in Khimicheskaya Fizika, 2012, Vol. 31, No. 2, pp. 31–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubkov, G.V., Golubkov, M.G. & Manzhelii, M.I. Microwave radiation in the upper atmosphere of the earth during strong geomagnetic disturbances. Russ. J. Phys. Chem. B 6, 112–127 (2012). https://doi.org/10.1134/S1990793112010186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793112010186

Keywords

Navigation