Russian Journal of Physical Chemistry B

, Volume 5, Issue 5, pp 770–779 | Cite as

Thermal stability of nitro derivatives of hydrocarbon cubane

Structure of Chemical Compounds. Spectroscopy

Abstract

An original nonorthogonal tight-binding model is used to determine the structural and energetic characteristics of the family of polynitrocubanes C8H8−q (NO2) q , where q = 1−8. The mechanisms of isomerization are studied in detail and the minimum heights of the energy barriers to the decay of the metastable clusters are calculated. It is shown that nitro groups destabilize the cubic carbon skeleton. For octanitrocubane C8(NO2)8, the temperature dependence of the characteristic decay time at temperatures 500–1000 K is obtained, and activation energy and frequency factor of the Arrhenius equation are calculated.

Keywords

hydrocarbon cubane octanitrocubane tight-binding potential molecular dynamics thermal stability activation energy frequency factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).CrossRefGoogle Scholar
  2. 2.
    Z. Li and S. L. Anderson, J. Phys. Chem. A 107, 1162 (2003).CrossRefGoogle Scholar
  3. 3.
    P. E. Eaton, Angew. Chem., Int. Ed. Engl. 31, 1421 (1992).CrossRefGoogle Scholar
  4. 4.
    J. B. Eckmann, R. L. Wiswell, and E. G. Haberman, in Proceedings of the International Forum on Space Technology and Applications, Ed. by M. S. El-Genk, AIP Conf. Proc. 420, 270 (1998).Google Scholar
  5. 5.
    M. M. Maslov, Russ. J. Phys. Chem. B 28, 211 (2009).CrossRefGoogle Scholar
  6. 6.
    P. E. Eaton, R. L. Gilardi, and M.-X. Zhang, Adv. Mater. 12, 1143 (2000).CrossRefGoogle Scholar
  7. 7.
    J. Kortus, M. R. Pederson, and S. L. Richardson, Chem. Phys. Lett. 322, 224 (2000).CrossRefGoogle Scholar
  8. 8.
    D. A. Hrovat, W. T. Borden, P. E. Eaton, and B. Kahr, J. Am. Chem. Soc. 123, 1289 (2001).CrossRefGoogle Scholar
  9. 9.
    J. Zhang and H. Xiao, J. Chem. Phys. 116, 10674 (2002).CrossRefGoogle Scholar
  10. 10.
    F. J. Owens, J. Mol. Struct. (Theochem) 460, 137 (1999).CrossRefGoogle Scholar
  11. 11.
    X.-H. Ju, H.-M. Xiao, and Q.-Y. Xia, Chem. Phys. Lett. 382, 12 (2003).CrossRefGoogle Scholar
  12. 12.
    R. Gilardi and R. J. Butcher, J. Chem. Crystallogr. 33, 281 (2003).CrossRefGoogle Scholar
  13. 13.
    K. A. Lukin, J. Li, P. E. Eaton, et al., J. Am. Chem. Soc. 119, 9591 (1997).CrossRefGoogle Scholar
  14. 14.
    M.-X. Zhang, P. E. Eaton, and R. L. Gilardi, Angew. Chem., Int. Ed. Engl. 39, 401 (2000).CrossRefGoogle Scholar
  15. 15.
    P. E. Eaton, M.-X. Zhang, R. L. Gilardi, et al., Propellants, Explosives, Pyrotechn. 27, 1 (2002).CrossRefGoogle Scholar
  16. 16.
    C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).CrossRefGoogle Scholar
  17. 17.
    P. B. Allen, J. Q. Broughton, and A. K. McMahan, Phys. Rev. B 34, 859 (1986).CrossRefGoogle Scholar
  18. 18.
    I. Kwon, R. Biswas, C. Z. Wang, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 49, 7242 (1994).CrossRefGoogle Scholar
  19. 19.
    M. Menon, J. Phys.: Condens. Matter 10, 10991 (1998).CrossRefGoogle Scholar
  20. 20.
    N. Bernstein, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 66, 075212 (2002).CrossRefGoogle Scholar
  21. 21.
    E. Kim, Y. H. Lee, and J. M. Lee, J. Phys.: Condens. Matter 6, 9561 (1994).CrossRefGoogle Scholar
  22. 22.
    J. Zhao and J. P. Lu, Phys. Lett. A 319, 523 (2003).CrossRefGoogle Scholar
  23. 23.
    S. Sapra, N. Shanthi, and D. D. Sarma, Phys. Rev. B 66, 205202 (2002).CrossRefGoogle Scholar
  24. 24.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51, 645 (2009).CrossRefGoogle Scholar
  25. 25.
    M. M. Maslov, Russ. J. Phys. Chem. B 29, 170 (2010).CrossRefGoogle Scholar
  26. 26.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).CrossRefGoogle Scholar
  27. 27.
    L. A. Openov, D. A. Lobanov, and A. I. Podlivaev, Phys. Solid State 52, 201 (2010).CrossRefGoogle Scholar
  28. 28.
    R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).CrossRefGoogle Scholar
  29. 29.
    C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).CrossRefGoogle Scholar
  30. 30.
    J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).CrossRefGoogle Scholar
  31. 31.
    E. G. Lewars, Modeling Marvels: Computational Anticipation of Novel Molecules (Springer, 2008), 282.Google Scholar
  32. 32.
    H. H. Rosenbrock, Comput. J. 5, 329 (1963).CrossRefGoogle Scholar
  33. 33.
    NIST Computational Chemistry Comparison and Benchmark Data Base. NIST Standard Reference Database No. 101. http://cccbdb.nist.gov/. Cited May 5, 2011.
  34. 34.
    D. W. Brenner, Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
  35. 35.
    B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).CrossRefGoogle Scholar
  36. 36.
    P. E. Eaton, X. Yusheng, and R. L. Gilardi, J. Am. Chem. Soc. 115, 10195 (1993).CrossRefGoogle Scholar
  37. 37.
    X.-J. Han, Y. Wang, Z.-Z. Lin, et al., J. Chem. Phys. 132, 064103 (2010).CrossRefGoogle Scholar
  38. 38.
    V. I. Minkin, B. Ya. Simkin, and R. M. Minyaev, Theory of Molecular Structure (Feniks, Rostov-on-Don, 1997) [in Russian].Google Scholar
  39. 39.
    A. I. Podlivaev and K. P. Katin, JETP Lett. 92, 52 (2010).CrossRefGoogle Scholar
  40. 40.
    K. P. Katin and A. I. Podlivaev, Phys. Solid State 52, 436 (2010).CrossRefGoogle Scholar
  41. 41.
    C. E. Klots, Z. Phys. D 20, 105 (1991).CrossRefGoogle Scholar
  42. 42.
    L. A. Openov and A. I. Podlivaev, JETP Lett. 84, 68 (2006).CrossRefGoogle Scholar
  43. 43.
    O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 49, 1617 (1927).CrossRefGoogle Scholar
  44. 44.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).CrossRefGoogle Scholar
  45. 45.
    A. I. Podlivaev, K. P. Katin, D. A. Lobanov, and L. A. Openov, Phys. Solid State 53, 215 (2011).CrossRefGoogle Scholar
  46. 46.
    R. Engelke, J. Org. Chem. 57, 4841 (1992).CrossRefGoogle Scholar
  47. 47.
    R. Engelke, J. Am. Chem. Soc. 115, 2961 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations