Skip to main content
Log in

Thermal stability of nitro derivatives of hydrocarbon cubane

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An original nonorthogonal tight-binding model is used to determine the structural and energetic characteristics of the family of polynitrocubanes C8H8−q (NO2) q , where q = 1−8. The mechanisms of isomerization are studied in detail and the minimum heights of the energy barriers to the decay of the metastable clusters are calculated. It is shown that nitro groups destabilize the cubic carbon skeleton. For octanitrocubane C8(NO2)8, the temperature dependence of the characteristic decay time at temperatures 500–1000 K is obtained, and activation energy and frequency factor of the Arrhenius equation are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).

    Article  CAS  Google Scholar 

  2. Z. Li and S. L. Anderson, J. Phys. Chem. A 107, 1162 (2003).

    Article  CAS  Google Scholar 

  3. P. E. Eaton, Angew. Chem., Int. Ed. Engl. 31, 1421 (1992).

    Article  Google Scholar 

  4. J. B. Eckmann, R. L. Wiswell, and E. G. Haberman, in Proceedings of the International Forum on Space Technology and Applications, Ed. by M. S. El-Genk, AIP Conf. Proc. 420, 270 (1998).

  5. M. M. Maslov, Russ. J. Phys. Chem. B 28, 211 (2009).

    Article  Google Scholar 

  6. P. E. Eaton, R. L. Gilardi, and M.-X. Zhang, Adv. Mater. 12, 1143 (2000).

    Article  CAS  Google Scholar 

  7. J. Kortus, M. R. Pederson, and S. L. Richardson, Chem. Phys. Lett. 322, 224 (2000).

    Article  CAS  Google Scholar 

  8. D. A. Hrovat, W. T. Borden, P. E. Eaton, and B. Kahr, J. Am. Chem. Soc. 123, 1289 (2001).

    Article  CAS  Google Scholar 

  9. J. Zhang and H. Xiao, J. Chem. Phys. 116, 10674 (2002).

    Article  CAS  Google Scholar 

  10. F. J. Owens, J. Mol. Struct. (Theochem) 460, 137 (1999).

    Article  CAS  Google Scholar 

  11. X.-H. Ju, H.-M. Xiao, and Q.-Y. Xia, Chem. Phys. Lett. 382, 12 (2003).

    Article  CAS  Google Scholar 

  12. R. Gilardi and R. J. Butcher, J. Chem. Crystallogr. 33, 281 (2003).

    Article  CAS  Google Scholar 

  13. K. A. Lukin, J. Li, P. E. Eaton, et al., J. Am. Chem. Soc. 119, 9591 (1997).

    Article  CAS  Google Scholar 

  14. M.-X. Zhang, P. E. Eaton, and R. L. Gilardi, Angew. Chem., Int. Ed. Engl. 39, 401 (2000).

    Article  CAS  Google Scholar 

  15. P. E. Eaton, M.-X. Zhang, R. L. Gilardi, et al., Propellants, Explosives, Pyrotechn. 27, 1 (2002).

    Article  CAS  Google Scholar 

  16. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).

    Article  CAS  Google Scholar 

  17. P. B. Allen, J. Q. Broughton, and A. K. McMahan, Phys. Rev. B 34, 859 (1986).

    Article  CAS  Google Scholar 

  18. I. Kwon, R. Biswas, C. Z. Wang, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 49, 7242 (1994).

    Article  CAS  Google Scholar 

  19. M. Menon, J. Phys.: Condens. Matter 10, 10991 (1998).

    Article  CAS  Google Scholar 

  20. N. Bernstein, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 66, 075212 (2002).

    Article  Google Scholar 

  21. E. Kim, Y. H. Lee, and J. M. Lee, J. Phys.: Condens. Matter 6, 9561 (1994).

    Article  CAS  Google Scholar 

  22. J. Zhao and J. P. Lu, Phys. Lett. A 319, 523 (2003).

    Article  CAS  Google Scholar 

  23. S. Sapra, N. Shanthi, and D. D. Sarma, Phys. Rev. B 66, 205202 (2002).

    Article  Google Scholar 

  24. M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51, 645 (2009).

    Article  CAS  Google Scholar 

  25. M. M. Maslov, Russ. J. Phys. Chem. B 29, 170 (2010).

    Article  Google Scholar 

  26. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).

    Article  CAS  Google Scholar 

  27. L. A. Openov, D. A. Lobanov, and A. I. Podlivaev, Phys. Solid State 52, 201 (2010).

    Article  CAS  Google Scholar 

  28. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).

    Article  CAS  Google Scholar 

  29. C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).

    Article  CAS  Google Scholar 

  30. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  CAS  Google Scholar 

  31. E. G. Lewars, Modeling Marvels: Computational Anticipation of Novel Molecules (Springer, 2008), 282.

  32. H. H. Rosenbrock, Comput. J. 5, 329 (1963).

    Article  Google Scholar 

  33. NIST Computational Chemistry Comparison and Benchmark Data Base. NIST Standard Reference Database No. 101. http://cccbdb.nist.gov/. Cited May 5, 2011.

  34. D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Article  CAS  Google Scholar 

  35. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).

    Article  CAS  Google Scholar 

  36. P. E. Eaton, X. Yusheng, and R. L. Gilardi, J. Am. Chem. Soc. 115, 10195 (1993).

    Article  CAS  Google Scholar 

  37. X.-J. Han, Y. Wang, Z.-Z. Lin, et al., J. Chem. Phys. 132, 064103 (2010).

    Article  Google Scholar 

  38. V. I. Minkin, B. Ya. Simkin, and R. M. Minyaev, Theory of Molecular Structure (Feniks, Rostov-on-Don, 1997) [in Russian].

    Google Scholar 

  39. A. I. Podlivaev and K. P. Katin, JETP Lett. 92, 52 (2010).

    Article  CAS  Google Scholar 

  40. K. P. Katin and A. I. Podlivaev, Phys. Solid State 52, 436 (2010).

    Article  CAS  Google Scholar 

  41. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  CAS  Google Scholar 

  42. L. A. Openov and A. I. Podlivaev, JETP Lett. 84, 68 (2006).

    Article  CAS  Google Scholar 

  43. O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 49, 1617 (1927).

    Article  CAS  Google Scholar 

  44. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  CAS  Google Scholar 

  45. A. I. Podlivaev, K. P. Katin, D. A. Lobanov, and L. A. Openov, Phys. Solid State 53, 215 (2011).

    Article  CAS  Google Scholar 

  46. R. Engelke, J. Org. Chem. 57, 4841 (1992).

    Article  CAS  Google Scholar 

  47. R. Engelke, J. Am. Chem. Soc. 115, 2961 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Katin.

Additional information

Original Russian Text © K.P. Katin, M.M. Maslov, 2011, published in Khimicheskaya Fizika, 2011, Vol. 30, No. 10, pp. 41–50.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katin, K.P., Maslov, M.M. Thermal stability of nitro derivatives of hydrocarbon cubane. Russ. J. Phys. Chem. B 5, 770–779 (2011). https://doi.org/10.1134/S1990793111090181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111090181

Keywords

Navigation