Skip to main content
Log in

Staging, negative temperature coefficient of the reaction rate and bifurcation in the monofront of hydrocarbon flames

  • Discussions
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Based on the postulate of competition between two mechanisms of fuel conversion (low-temperature autocatalysis (A) and high-temperature thermal self-acceleration (T) in the flame front, a method for determining the degree of staging S of the flame of a given fuel-air mixture is proposed. Zones with prevalence of each of these mechanisms, the activity of which depends on the initial fuel concentration C 0, temperature T 0, and pressure P, are identified. A quantitative method for determining S consists in calculating the ratio of the maximum rates of fuel and oxygen consumption and water formation in zones A (A K i ) and T (A K i ) from mass-spectrometric analysis of the flame front. The S < 1 values correspond to the monofront (before bifurcation), whereas S > 1, to the bifront (after bifurcation). Bifurcation point arises as a result of the increase of the negative temperature coefficient (NTC) associated with the difference A K i T K i = ɛ becoming positive, which is the criterion of occurrence of bifurcation. At ɛ ≤ 0, in the profiles of the rates of fuel and oxygen consumption and water formation, the NTC zone between zones A and T expands. At ɛ > 0, the monofront turns into a bifront. It was established that the effect of T 0 on the shape of the curves of the rates of formation and accumulation of other combustion products typical of zone T, except for O2, fuel, and water, is small, if any. Experimental data on mass-spectrometric analysis of combustible mixtures of pentane with C 0 = α = 1.4, 1.5, and 1.7 are for the first time presented. Results of calculations of S from previously published data on probing the front of flames C1–C6 hydrocarbon are presented. It is shown that S for all the flames is a smoothly varying function of C 0 to the bifurcation point. The dependence of S on T 0 is negative. Flames with the same values of S are identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Semenov, On Some Problems of Chemical Kinetics and Reactivity (Akademizdat, Moscow, 1958) [in Russian].

    Google Scholar 

  2. N. N. Semenov, Chain Reactions (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. Ya. B. Zel’dovich, G. I. Barenblatt, V. V. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980).

    Google Scholar 

  4. A. S. Sokolik, Self-Ignition, Flame, and Detonation in Gases (Akademizdat, Moscow, 1960) [in Russian].

    Google Scholar 

  5. B. Lewis and G. von Elbe, Combustion, Flames, and Explosions of Gases, 3rd ed. (Academic, New York, 1987), p. 739.

    Google Scholar 

  6. V. Ya. Shtern, Mechanism of Oxidation of Hydrocarbons in Gas Phase (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  7. G. I. Ksandopulo, Chemistry of Flame (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  8. G. I. Ksandopulo, B. Ya. Kolesnikov, and D. S. Odnorog, Dokl. Akad. Nauk SSSR 216, 1098 (1974).

    CAS  Google Scholar 

  9. G. I. Ksandopulo and V. V. Dubinin, Chemistry of Gas-Phase Combustion (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  10. A. A. Konnov, I. V. D’yakov, and G. I. Ksandopulo, Khim. Fiz. 12, 1488 (1993).

    CAS  Google Scholar 

  11. G. I. Ksandopulo, B. Ya. Kolesnikov, and D. S. Odnorog, Fiz. Goreniya Vzryva 10, 841 (1974).

    CAS  Google Scholar 

  12. G. I. Ksandopulo, B. Ya. Kolesnikov, V. V. Dubinin, and D. S. Odnorog, Fiz. Goreniya Vzryva 13, 641 (1977).

    CAS  Google Scholar 

  13. G. I. Ksandopulo and L. I. Kopylova, Fiz. Goreniya Vzryva 40(5), 42 (2004).

    CAS  Google Scholar 

  14. G. I. Ksandopulo and L. I. Kopylova, Gorenie Plazmokhim. 3(2), 91 (2005).

    CAS  Google Scholar 

  15. G. I. Ksandopulo, A. A. Sagindykov, S. E. Kudaibergenov, and Z. A. Mansurov, Fiz. Goreniya Vzryva 11, 838 (1975).

    CAS  Google Scholar 

  16. G. I. Ksandopulo, Gorenie Plazmokhim. 1(4), 279 (2003).

    Google Scholar 

  17. G. I. Ksandopulo and L. I. Kopylova, Combust. Explos. Shock Waves, No. 5, 535 (2004).

  18. G. M. Bozheeva, Candidate’s Dissertation in Chemistry (Kazakh State University, Alma-Ata, 1989).

    Google Scholar 

  19. G. M. Bozheeva, V. K. Manzhos, and G. I. Ksandopulo, in Proceedings of the 22th International Symposium on Combustion (Combust. Inst., Pittsburgh, 1988), p. 316.

    Google Scholar 

  20. L. I. Kopylova, Candidate’s Dissertation in Chemistry (Kazakh State University, Alma-Ata, 1994).

  21. W. G. Agnew and I. T. Agnew, in Proceedings of the 10th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1965), p. 123.

    Google Scholar 

  22. M. Furutani, Y. Ohta, and M. Nose, Euras. Chem.-Tech. J., No. 3, 157 (2001).

  23. V. A. Bunev and V. S. Babkin, Fiz. Goreniya Vzryva 42(5), 14 (2006).

    CAS  Google Scholar 

  24. R. J. Foresti, in Proceedings of the 5th International Symposium on Combustion Comb. Just. (Reinhold, New York, 1955), p. 582.

    Google Scholar 

  25. V. S. Babkin and V. A. Bunev, Gorenie Plazmokhim. 5(1–2), 67 (2007).

    CAS  Google Scholar 

  26. V. Ya. Basevich, V. I. Vedeneev, and V. S. Arutyunov, Khim. Fiz. 19(11), 94 (2000).

    CAS  Google Scholar 

  27. V. Ya. Basevich, V. I. Vedeneev, and V. S. Arutyunov, Khim. Fiz. 23(1), 50 (2004).

    CAS  Google Scholar 

  28. V. Ya. Basevich, V. I. Vedeneev, and V. S. Arutyunov, Khim. Fiz. 24(2), 77 (2005).

    CAS  Google Scholar 

  29. C. Chevalier, W. I. Pitz, J. Warnatz, C.K. Westbrook, and H. Meerk, in Proceedings of the 24th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1992), p. 93.

    Google Scholar 

  30. J. W. Bozzelli and W. I. Pitz, in Proceedings of the 25th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1994), p. 783.

    Google Scholar 

  31. E. M. Fesher, W. J. Pitz, H. E. Currant, and C. K. Westbrook, in Proceedings of the 28th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 2000), p. 1579.

    Google Scholar 

  32. M. R. Cour, R. Minetti, L. R. Soshet, et al., in Proceedings of the 28th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 2000), p. 1671.

    Google Scholar 

  33. V. V. Dubinin, Candidate’s Dissertation in Chemistry (Kazakh State University, Alma-Ata, 1976).

  34. G. I. Ksandopulo, Gorenie Plazmokhim. 5(1–2), 7 (2007).

    CAS  Google Scholar 

  35. G. I. Ksandopulo, in Proceedings of the 14th Symposium on Combustion and Explosion (Chernogolovka, 2008), p. 104 [in Russian].

  36. G. Nicolis and I. Prigogin, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Ksandopulo.

Additional information

Original Russian Text © G.I. Ksandopulo, 2011, published in Khimicheskaya Fizika, 2011, Vol. 30, No. 8, pp. 83–93.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksandopulo, G.I. Staging, negative temperature coefficient of the reaction rate and bifurcation in the monofront of hydrocarbon flames. Russ. J. Phys. Chem. B 5, 701–711 (2011). https://doi.org/10.1134/S199079311104018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311104018X

Keywords

Navigation