Skip to main content
Log in

Resonance capture of electrons by electroactive organic molecules

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Bound states of electrons with electroactive aromatic molecules, promising for use in molecular electronics, are studied employing electron attachment spectroscopy Anions are produced in the gas phase through the capture of electrons with energies of up to 15 eV by molecules via the resonance mechanism. The possible pathways of fragmentation of molecular anions and the times of electron retention by the test molecules at various incident electron energies are measured. The resonance states identified are interpreted with the help of quantum-chemical calculations. The possibility of applying the results obtained to molecular electronics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jalabert, A. Amara, and F. Clermidy, Molecular Electronics Materials, Devices and Applications (Springer, New York, 2008).

    Google Scholar 

  2. A. Nitzan and M. A. Rather, Science 300, 1384 (2003).

    Article  CAS  Google Scholar 

  3. P. S. Krstić, D. J. Dean, X.-G. Zhang, et al., Comput. Mater. Sci. 28, 321 (2003).

    Article  Google Scholar 

  4. R. Pati, M. McClain, and A. Bandyopadhyay, Phys. Rev. Lett. 100, 246801 (2008).

    Article  Google Scholar 

  5. B. Larade and A. M. Bratkovsky, Phys. Rev. B 68, 235305 (2003).

    Article  Google Scholar 

  6. S. W. Staley and J. T. Strnad, J. Chem. Phys. 98, 116 (1994).

    Article  CAS  Google Scholar 

  7. S. A. Pshenichnyuk, N. L. Asfandiarov, and P. D. Barrow, Izv. Akad. Nauk, Ser. Khim., No. 6, 1222 (2007).

  8. E. Illenberger and B. M. Smirnov, Usp. Fiz. Nauk 168, 731 (1998) [Phys. Usp. 41, 651 (1998)].

    Article  CAS  Google Scholar 

  9. B. Boudaïffa, P. Cloutier, D. Hunting, et al., Science 287, 1658 (2000).

    Article  Google Scholar 

  10. P. D. Burrow and G. A. Gallup, J. Chem. Phys. 125, 154309 (2006).

    Article  CAS  Google Scholar 

  11. Z. Huang, B. Xu, Y. Chen, et al., Nanolett. 6, 1240 (2006).

    CAS  Google Scholar 

  12. A. Pecchia, G. Romano, and A. D. Carlo, Phys. Rev. B 75, 035401 (2007).

    Article  Google Scholar 

  13. D. M. Perl and P. D. Burrow, Chem. Phys. Lett. 206, 483 (1993).

    Article  Google Scholar 

  14. L. G. Christophorou, Adv. Electronics Electron Phys. 46, 55 (1978).

    CAS  Google Scholar 

  15. L. G. Christophorou, Electron-Molecule Interactions and Their Applications (Academic, Orlando, 1984).

    Google Scholar 

  16. V. I. Khvostenko, Mass-Spectrometry of Negative Ions in Organic Chemistry (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  17. E. Illenberger and J. Momigny, Gaseous Molecular Ions (Springer, New York, 1992).

    Google Scholar 

  18. A. Chutjian, A. Garscadden, and J. M. Wadehra, Phys. Rep. 264, 393 (1996).

    Article  CAS  Google Scholar 

  19. O. Ingolfsson, F. Weik, and E. Illenberger, Int. J. Mass Spec. Ion Phys. 155, 1 (1996).

    Article  CAS  Google Scholar 

  20. A. K. Kazanskii and I. I. Fabrikant, Usp. Fiz. Nauk 143, 601 (1984) [Sov. Phys. Usp. 27, 607 (1984)].

    CAS  Google Scholar 

  21. A. S. Vorob’ev, N. L. Asfandiarov, V. G. Lukin, et al., Zh. Tekh. Fiz. 79(9), 11 (2009) [Tech. Phys. 54, 1255 (2009)].

    Google Scholar 

  22. I. Kh. Aminev, V. I. Khvostenko, V. P. Yur’ev, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1885 (1973).

  23. R. G. Kostyanovskii, V. I. Khvostenko, I. I. Furlei, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 584 (1974).

  24. N. L. Asfandiarov, A. I. Fokin, V. G. Lukin, et al., Rapid Commun. Mass Spectrom. 13, 1116 (1999).

    Article  CAS  Google Scholar 

  25. S. A. Pshenichnyuk, G. A. Gallup, and P. D. Burrow, J. Phys. Chem. A 111, 11837 (2007).

    Article  CAS  Google Scholar 

  26. G. A. Gallup, J. Mol. Struct.: THEOCHEM 857, 123 (2008).

    Article  CAS  Google Scholar 

  27. A. Modelli and L. Mussoni, Chem. Phys. 332, 367 (2007).

    Article  CAS  Google Scholar 

  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-03, Rev. E.01 (Gaussian Inc., Wallingford CT, 2004).

    Google Scholar 

  29. V. I. Khvostenko, I. I. Furlei, V. A. Mazunov, et al., Dokl. Akad. Nauk SSSR 213, 1364 (1973).

    CAS  Google Scholar 

  30. P. D. Burrow, J. A. Michejda, and K. D. Jordan, J. Chem. Phys. 86, 9 (1987).

    Article  CAS  Google Scholar 

  31. A. Modelli, G. Distefano, and D. Jones, Chem. Phys. 82, 489 (1983).

    Article  CAS  Google Scholar 

  32. N. A. Borisevich, S. M. Kazakov, A. V. Kukhto, et al., Zh. Prikl. Spektrosk. 71, 681 (2004).

    CAS  Google Scholar 

  33. T. Skalicky and M. Allan, J. Phys. B: At. Mol. Opt. Phys. 37, 4849 (2004).

    Article  CAS  Google Scholar 

  34. V. I. Khvostenko, O. G. Khvostenko, B. G. Zykov, et al., Dokl. Akad. Nauk SSSR 315, 420 (1990).

    CAS  Google Scholar 

  35. N. L. Asfandiarov, V. S. Fal’ko, V. G. Lukin, et al., Rapid Commun. Mass Spectrom. 15, 1869 (2001).

    Article  CAS  Google Scholar 

  36. K. Aflatooni and P. D. Burrow, J. Chem. Phys. 113, 1455 (2000).

    Article  CAS  Google Scholar 

  37. S. E. Bradforth, E. H. Kim, D. W. Arnold, et al., J. Chem. Phys. 98, 800 (1993).

    Article  CAS  Google Scholar 

  38. N. L. Asfandiarov, S. A. Pshenichnyuk, V. G. Lukin, et al., Int. J. Mass Spectrom. 264, 22 (2007).

    Article  CAS  Google Scholar 

  39. R. Balog, J. Langer, S. Gohlke, et al., Int. J. Mass Spectrom. 233, 267 (2004).

    Article  CAS  Google Scholar 

  40. D. B. Robinson, J. R. Funamura, A. A. Talin, et al., Appl. Phys. Lett. 90, 083119 (2007).

    Article  Google Scholar 

  41. A. Lafosse, M. Bertin, D. Craceres, et al., Eur. Phys. J. D 35, 363 (2005).

    Article  CAS  Google Scholar 

  42. Q. H. Wang and M. C. Hersam, Nature Chem. 1, 206 (2009).

    Article  CAS  Google Scholar 

  43. R. L. McCreery, Anal. Chem. 78, 3490 (2006).

    Article  CAS  Google Scholar 

  44. L. Wojnarovits and G. Foldiak, J. Chromatogr. Sci. 206, 511 (1981).

    Article  CAS  Google Scholar 

  45. J. Scheidt and R. Weinkauf, Chem. Phys. Lett. 266, 201 (1997).

    Article  Google Scholar 

  46. T. Heinis, S. Chowdhury, S. L. Scott, et al., J. Am. Chem. Soc. 110, 400 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pshenichnyuk.

Additional information

Original Russian Text © S.A. Pshenichnyuk, A.V. Kukhto, I.N. Kukhto, N.L. Asfandiarov, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 11, pp. 82–96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pshenichnyuk, S.A., Kukhto, A.V., Kukhto, I.N. et al. Resonance capture of electrons by electroactive organic molecules. Russ. J. Phys. Chem. B 4, 1014–1027 (2010). https://doi.org/10.1134/S1990793110060205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110060205

Keywords

Navigation