Skip to main content
Log in

Correlation between the catalytic activity of polyoxometallates and the special features of their tunnel and optical spectra

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The tunnel spectra of phosphomolybdic acid, a classic heteropoly acid with a Keggin anion, were measured in ultrahigh-vacuum experiments with the use of scanning tunnel microscopy. The dependences of the resonance characteristics of the spectra, “negative differential resistances,” on the vacuum gap, material of contacts, and field polarity were studied. An earlier unknown mechanism of the formation of these characteristics was described. The mechanism included the action of strong electric fields in scanning tunnel microscope nanocontacts and a low degree of the delocalization of Keggin anion peripheral electrons. Strong electric fields (∼107 V/cm) characteristic of spectroscopic measurements with the use of scanning tunnel microscopes could break exchange bonds in heteropoly acids and their derivatives. This produced spectroscopic effects of interest for catalysis and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Krylov, Catalysis with Non-Metals. Rules in Choice of Catalysts (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  2. O. V. Krylov, Heterogeneous Catalysis (Akademkniga, Moscow, 2004) [in Russian].

    Google Scholar 

  3. The Mechanism of Catalysis. Part 2. Study Methods of Catalytic Reactions, Ed. by G. K. Boreskov and T. V. Andrushekevich (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  4. F. I. Dalidchik and B. R. Shub, Ross. Nanotekhnol. 1–2, 82 (2006).

    Google Scholar 

  5. B. A. Watson, M. A. Barteau, L. Haggerty, et al., Langmuir 8, 1145 (1992).

    Article  CAS  Google Scholar 

  6. I. K. Song, M. S. Kaba, G. Coulston, et al., Chem. Mater. 8, 2352 (1996).

    Article  CAS  Google Scholar 

  7. I. K. Song and M. A. Barteau, J. Mol. Catal. A 182–183, 185 (2002).

    Google Scholar 

  8. I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 17528 (1996).

    Article  CAS  Google Scholar 

  9. I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 19577 (1996).

    Article  Google Scholar 

  10. I. K. Song, J. E. Lyons, and M. A. Barteau, Catal. Today 81, 137 (2003).

    Article  CAS  Google Scholar 

  11. I. K. Song, M. S. Kaba, and M. A. Barteau, Langmuir 18, 2358 (2002).

    Article  CAS  Google Scholar 

  12. I. K. Song and M. A. Barteau, Langmuir 20, 1850 (2004).

    Article  CAS  Google Scholar 

  13. I. K. Song, M. S. Kaba, K. Nomiyac, et al., J. Mol. Catal. A: Chem. 262, 216 (2007).

    Article  CAS  Google Scholar 

  14. M. H. Youn, D. R. Park, J. C. Jung, et al., Korean J. Chem. Eng. 24(1), 51 (2007).

    Article  CAS  Google Scholar 

  15. I. Kovács, in Proc. of the Intern. Conf. on Nanosci. and Technol. (ICN&T 2006), J. Phys.: Conf. Ser. 61, 623 (2007).

    Article  CAS  Google Scholar 

  16. A. M. Dykhne, S. Yu. Vasil’ev, O. A. Petrii, et al., Dokl. Akad. Nauk 368, 467 (1999) [Dokl. Phys. 44, 653 (1999)].

    CAS  Google Scholar 

  17. M. Ruben, J.-M. Lehn, and P. Muller, Chem. Soc. Rev. 35, 1 (2006).

    Article  CAS  Google Scholar 

  18. M. S. Alam, V. Dremov, P. Muller, et al., Inorg. Chem. 45, 2866 (2006).

    Article  CAS  Google Scholar 

  19. S. Yu. Vasil’ev and A. V. Denisov, Zh. Tekh. Fiz. 70, 100 (2000) [Tech. Phys. 45, 99 (2000)].

    Google Scholar 

  20. M. S. Pop, Heteropolyand Isopolymetallates (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  21. Scanning Tunneling Microscopy II, Vol. 28 of Springer Series in Surface Science, Ed. by R. Wiesendanger and H. J. Guntherodt (Springer, Berlin, 1995).

    Google Scholar 

  22. I. K. Song, J. R. Kitchin, and M. A. Barteau, Proc. Natl. Acad. Sci. USA 99(Suppl. 2), 6471 (2002).

    Article  CAS  Google Scholar 

  23. W. Lyo and P. Avouris, Science 245, 1369 (1989).

    Article  CAS  Google Scholar 

  24. Z. H. Lu, R. S. Khangura, M. W. C. Dharma-Wardana, et al., Appl. Phys. Lett. 85, 323 (2004).

    Article  CAS  Google Scholar 

  25. N. Nilius, T. M. Wallis, and W. Ho, Phys. Rev. Lett. 90, 046808 (2003).

    Article  CAS  Google Scholar 

  26. A. K. Gatin, M. V. Grishin, F. I. Dalidchik, et al., Khim. Fiz. 25(6), 17 (2006).

    CAS  Google Scholar 

  27. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, et al., Rev. Mod. Phys. 75, 1 (2003).

    Article  CAS  Google Scholar 

  28. J. M. Maestre, X. Lopez, and C. Bo, J. Am. Chem. Soc. 123, 3749 (2001).

    Article  CAS  Google Scholar 

  29. F. I. Dalidchik, S. A. Kovalevskii, and E. M. Balashov, Ross. Nanotekhnol. 4(7–8), 87 (2009).

    Google Scholar 

  30. V. V. Rotkin and R. A. Suris, Fiz. Tverd. Tela 36, 1899 (1994) [Phys. Solid State 36, 991 (1994)].

    Google Scholar 

  31. G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).

    Article  Google Scholar 

  32. F. I. Dalidchik and V. Z. Slonim, Zh. Eksp. Teor. Fiz. 70, 47 (1976) [Sov. Phys. JETP 43, 25 (1976)].

    CAS  Google Scholar 

  33. L. Jdira, P. Liljeroth, E. Stoffels, et al., Phys. Rev. B 73, 115305 (2006).

    Article  CAS  Google Scholar 

  34. L. L. A. Adams, B. W. Lang, and A. M. Goldman, Phys. Rev. Lett. 95, 146804 (2005).

    Article  CAS  Google Scholar 

  35. N. Simonian, J. Li, and K. Likharev, Nanotechnology 18, 424006 (2007).

    Article  CAS  Google Scholar 

  36. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).

    Article  CAS  Google Scholar 

  37. F.-R. F. Fan, J. Yang, L. Cai, et al., J. Amer. Chem. Soc. 124, 5550 (2002).

    Article  CAS  Google Scholar 

  38. N. P. Guisinger, M. E. Greene, R. Basu, et al., Nano Lett. 4, 55 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Balashov.

Additional information

Original Russian Text © F.I. Dalidchik, E.M. Balashov, B.A. Budanov, A.K. Gatin, M.V. Grishin, A.A. Kirsankin, S.A. Kovalevskii, N.N. Kolchenko, V.G. Slutskii, B.R. Shub, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 11, pp. 21–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalidchik, F.I., Balashov, E.M., Budanov, B.A. et al. Correlation between the catalytic activity of polyoxometallates and the special features of their tunnel and optical spectra. Russ. J. Phys. Chem. B 4, 896–903 (2010). https://doi.org/10.1134/S1990793110060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110060047

Keywords

Navigation