Skip to main content
Log in

The mechanism of formation of the hydroperoxyl radical in the CF3COOH + 3O2 system: a quantum-chemical study

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Ab initio quantum-chemical calculations of the (CF3CO2H +2 3O2) and (CF3CO 2 3O2) complexes were performed by the MP2 method. It was found that these complexes were characterized by low complex formation energies, of 2.97 and 1.72 kcal/mol, respectively. According to the MP2(full)/6-311++G(d, p) calculation data, the bridge stabilization of oxygen by linking with both the CF3CO2H +2 cation and CF3CO 2 anion is much more favorable energetically. A study of the potential energy surface of the joint molecular system (CF3CO2H +2 3O2…CF3CO 2 ) shows that proton experiences activationless transfer from the cation to the 3O2 molecule accompanied by electron transfer from the CF3COO anion. An analysis of spin density distribution shows that two radicals are stabilized in the (CF3CO2….OOH….O=C(OH)CF3) complex in the triplet state observed on the potential energy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. March, Advanced Organic Chemistry (Wiley, New York, 1985; Mir, Moscow, 1987).

    Google Scholar 

  2. I. A. Sidorenkova, I. Yu. Yakimova, M. V. Vishnetskaya, et al., Zh. Fiz. Khim. 79, 1526 (2005) [Russ. J. Phys. Chem. A 79, 1352 (2005)].

    Google Scholar 

  3. W. J. Hehre, L. Radom, P. V. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1985).

    Google Scholar 

  4. J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, et al., J. Chem. Phys. 110, 2822 (1999).

    Article  CAS  Google Scholar 

  5. J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, et al., J. Chem. Phys. 112, 6532 (2000).

    Article  CAS  Google Scholar 

  6. V. N. Solkan and G. M. Zhidomirov, in Proc. of the 3rd All-Russ. School-Conf. on High Reaction Intermediates of Chemical Reactions (Mosc. Gos. Univ., Moscow, 2008), p. 84.

    Google Scholar 

  7. V. N. Solkan, in Proc. of the Conf. on Current Trends in Computational Chemistry (Jackson, Miss., USA, 2008), p. 156.

  8. V. N. Solkan and V. B. Kazanskii, Kinet. Katal. 42, 448 (2001) [Kinet. Catal. 42, 404 (2001)].

    Google Scholar 

  9. V. N. Solkan, I. V. Kuz’min, and V. B. Kazanskii, Kinet. Katal. 42, 456 (2001) [Kinet. Catal. 42, 411 (2001)].

    Google Scholar 

  10. V. N. Solkan and V. B. Kazanskii, Kinet. Katal. 43, 231 (2002) [Kinet. Catal. 43, 210 (2002)].

    Article  Google Scholar 

  11. V. B. Kazansky and V. N. Solkan, Phys. Chem. Chem. Phys. 5, 31 (2003).

    Article  CAS  Google Scholar 

  12. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

    Article  CAS  Google Scholar 

  13. S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).

    Article  CAS  Google Scholar 

  14. V. Barone and M. Cossi, J. Phys. Chem. A 102, 1995 (1998).

    Article  CAS  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Rev. C.02 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  16. W. J. Hehre, R. Ditchfield, L. Radom, et al., J. Am. Chem. Soc. 92, 4796 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Solkan.

Additional information

Original Russian Text © V.N. Solkan, G.M. Zhidomirov, M.Ya. Mel’nikov, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 10, pp. 14–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solkan, V.N., Zhidomirov, G.M. & Mel’nikov, M.Y. The mechanism of formation of the hydroperoxyl radical in the CF3COOH + 3O2 system: a quantum-chemical study. Russ. J. Phys. Chem. B 4, 705–708 (2010). https://doi.org/10.1134/S1990793110050027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110050027

Keywords

Navigation