Skip to main content
Log in

Lower concentration limit of carbon filtration combustion

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

For mixtures of carbon materials and an inert filler, dependences of the characteristics of the filtration combustion wave on the gaseous oxidizer supply rate at a fuel content in the mixture of less than 7 wt % were obtained. The existence of a lower concentration limit for a steady-state filtration combustion wave was established. It was demonstrated that at a given intensity of heat loss, the concentration limits are determined by the reactivity of the carbon material and the oxidizer supply rate. At the effective coefficient of heat loss α = 8 W/(m2 K), effective conductivity of mixture material λ = 2 W/(m K), and air supply rate G = 0.1 m/s, the lowest fraction of carbon in the mixture at which combustion is still possible was 4.5 wt % for carbon-carbon composite, 2.5 wt % for activated birch coal, and 2.0 wt % for birch coal, the most reactive kind of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Propagation of Thermal Waves in Heterogeneous Media, A Collection of Works, Ed. by Yu. S. Matros (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  2. A. P. Aldushin and A. G. Merzhanov, Propagation of Thermal Waves in Heterogeneous Media, A Collection of Works, Ed. by Yu. S. Matros (Nauka, Novosibirsk, 1988), p. 9 [in Russian].

    Google Scholar 

  3. D. A. Schult, B. J. Matkowsky, V. A. Volpert, and A. C. Fernandez-Pello, Combust. Flame 104, 1 (1996).

    Article  CAS  Google Scholar 

  4. I. Y. Akkutlu and Y. C. Yortsos, Combust. Flame 134, 229 (2003).

    Article  CAS  Google Scholar 

  5. E. A. Salganskii, V. M. Kislov, S. V. Glazov, et al., Fiz. Goreniya Vzryva 44(3), 30 (2008) [Combust. Explos., Shock Waves 44, 273 (2008)].

    CAS  Google Scholar 

  6. A. V. Becker, E. V. Polianczyk, N. N. Volkova, and G. B. Manelis, Teor. Osn. Khim. Tekhnol. 38, 539 (2004) [Theor. Found. Chem. Eng. 38, 510 (2004)].

    Google Scholar 

  7. A. S. Predvoditelev, L. N. Khitrin, O. A. Tsukhanova, et al., Carbon Combustion (Akad. Nauk SSSR, Moscow, 1949) [in Russian].

    Google Scholar 

  8. Reactions of Carbon with Gases, Ed. by E. S. Golovina (Inostrannaya Literatura, Moscow, 1963) [in Russian].

    Google Scholar 

  9. I. M. Bews, A. N. Hayhurst, S. M. Richardson, and S. G. Taylor, Combust. Flame 124, 231 (2001).

    Article  CAS  Google Scholar 

  10. N. N. Volkova, E. A. Salganskii, A. A. Zhirnov, and G. B. Manelis, Khim. Fiz. 26(2), 53 (2007).

    Google Scholar 

  11. B. S. Haynes, Combust. Flame 126, 1421 (2001).

    Article  CAS  Google Scholar 

  12. I. I. Amelin, N. N. Volkova, A. A. Zhirnov, et al., Dokl. Akad. Nauk 421, 65 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Amelin.

Additional information

Original Russian Text © I.I. Amelin, N.N. Volkova, A.A. Zhirnov, A.P. Alekseev, A.F. Zholudev, E.V. Polianczyk, G.B. Manelis, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 3, pp. 76–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelin, I.I., Volkova, N.N., Zhirnov, A.A. et al. Lower concentration limit of carbon filtration combustion. Russ. J. Phys. Chem. B 4, 265–270 (2010). https://doi.org/10.1134/S1990793110020120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110020120

Keywords

Navigation