Advertisement

Russian Journal of Physical Chemistry B

, Volume 4, Issue 1, pp 170–174 | Cite as

The thermal stability of linear oligomers constructed from cubylene units

  • M. M. Maslov
Chemical Physics of Nanomaterials

Abstract

The work presents the results of quantum-chemical calculations of linear C8H7-(C8H6) N -C8H7 oligomers constructed from cubylene fragments. The stability of these metastable compounds was studied by the molecular dynamics method using the tight binding potential. For oligomers with N = 0, 1, 2, the temperature dependences of lifetimes over the temperature range T = 800–1750 K were determined directly and the activation energies and frequency factors in the Arrhenius equation were calculated. Their stability was found to decrease as N increased. The calculated activation energy for the smallest oligomer possible (N = 0), cubylcubane, was E a = 1.6 ± 0.1 eV. For the linear oligomer comprising four cubylene fragments (N = 2), tetracubyl, it was E a = 1.1 ± 0.1 eV.

Keywords

Oligomer Cubane Frequency Factor Molecular Dynamic Method Small Oligomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).CrossRefGoogle Scholar
  2. 2.
    P. E. Eaton, Angew. Chem., Int. Ed. Engl. 31, 1421 (1992).CrossRefGoogle Scholar
  3. 3.
    E. B. Fleischer, J. Am. Chem. Soc. 86, 3889 (1964).CrossRefGoogle Scholar
  4. 4.
    B. D. Kybett, S. Carroll, P. Natalis, et al., J. Am. Chem. Soc. 88, 626 (1966).CrossRefGoogle Scholar
  5. 5.
    P. E. Eaton, J. Li, and S. P. Upadhyaya, J. Org. Chem. 60, 966 (1995).CrossRefGoogle Scholar
  6. 6.
    P. E. Eaton, R. L. Gilardi, and M.-X. Zhang, Adv. Mater. 12, 1143 (2000).CrossRefGoogle Scholar
  7. 7.
    F. Valencia, A. H. Romero, M. Kiwi, et al., J. Chem. Phys. 121, 9172 (2004).CrossRefGoogle Scholar
  8. 8.
    B. Herrera, F. Valencia, A. H. Romero, et al., J. Mol. Struct.: THEOCHEM. 769, 183 (2006).CrossRefGoogle Scholar
  9. 9.
    E. Konstantinova, A. Camilo, Jr., P. M. V. B. Barone, et al., J. Mol. Struct.: THEOCHEM. 868, 37 (2008).CrossRefGoogle Scholar
  10. 10.
    R. Gilardi, M. Maggini, and P. E. Eaton, J. Am. Chem. Soc. 110, 7232 (1988).CrossRefGoogle Scholar
  11. 11.
    N. N. Matyushenko, V. E. Strel’nitskii, and V. A. Gusev, Kristallografiya 26, 484 (1981) [Sov. Phys. Crystallogr. 26, 274 (1981)].Google Scholar
  12. 12.
    R. L. Johnston and R. Hoffmann, J. Am. Chem. Soc. 111, 810 (1989).CrossRefGoogle Scholar
  13. 13.
    B. Winkler and V. Milman, Chem. Phys. Lett. 293, 284 (1998).CrossRefGoogle Scholar
  14. 14.
    P. Liu, H. Cui, and G. W. Yang, Cryst. Growth Des. 8, 581 (2008).CrossRefGoogle Scholar
  15. 15.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).CrossRefGoogle Scholar
  16. 16.
    L. A. Openov and A. I. Podlivaev, Fiz. Tverd. Tela 50, 1146 (2008) [Phys. Solid State 50, 1195 (2008)].Google Scholar
  17. 17.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela 51, 609 (2009) [Phys. Solid State 51, 645 (2009)].Google Scholar
  18. 18.
    M. M. Maslov, Khim. Fiz. 28, 43 (2009) [Russ. J. Phys. Chem. B 28, 211 (2009)].Google Scholar
  19. 19.
    I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela 47, 751 (2005) [Russ. J. Phys. Chem. B 28,211 (2009)].Google Scholar
  20. 20.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 217 (2006) [JETP Lett. 84, 185 (2006)].Google Scholar
  21. 21.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 73 (2006) [JETP Lett. 84, 68 (2006)].Google Scholar
  22. 22.
    L. A. Openov, I. V. Davydov, and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 85, 418 (2007) [JETP Lett. 85, 339 (2007)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State Institute of Engineering Physics (Technical University)MoscowRussia

Personalised recommendations