Skip to main content
Log in

Effect of the composition of the combustible mixture on the development of flame front instability

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Numerical simulations are used to study the effect of the chemical composition of the combustible mixture on the development of the hydrodynamic instability of the flame front, its acceleration, and the possibility of transition to the detonation regime. The combustion of hydrogen-containing mixtures in confined spaces (channels) was considered. Calculations were performed within the framework of a two-dimensional hydrodynamic model for the combustion of premixed mixtures with account of viscosity, heat conduction, multicomponent diffusion, and chemical kinetics. It was demonstrated that the presence of an inert component and the deviation of the mixture composition from stoichiometry caused not only a quantitative but also a qualitative change in the character of burning of gaseous combustible mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Urtiew and A. K. Oppenheim, Proc. R. Soc. London A 295, 13 (1966).

    Article  CAS  Google Scholar 

  2. K. Oppenheim and R. I. Soloukhin, Am. Rev. Fluid Mech. 5, 31 (1973).

    Article  CAS  Google Scholar 

  3. K. I. Shchelkin and Ya. K. Troshin, Combustion Gas Dynamics (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  4. M. A. Nettleton, Gaseous Detonations: Their Nature, Effects and Control (Chapman and Hall, London, 1987; Mir, Moscow, 1989).

    Google Scholar 

  5. I. Brailovskty and G. I. Sivashinsky, Combust. Flame 122, 492 (2000).

    Article  Google Scholar 

  6. M. A. Liberman, M. F. Ivanov, O. E. Peil, D. M. Valiev, and L.-E. Eriksson, Combust. Theory Model. 7, 653 (2003).

    Article  Google Scholar 

  7. V. Bychkov, A. Petchenko, V. Akkerman, and L.-E. Eriksson, Phys. Rev. E 72, 046307–1 (2005).

    Article  Google Scholar 

  8. V. N. Gamezo, E. S. Oran, and A. M. Khokhlov, in Proc. 41st Aerospace Sci. Meeting (AIAA, Reston, VA, 2003), p. 1317.

    Google Scholar 

  9. Ya. B. Zel’dovich, V. B. Librovich, G. M. Makhviladze, and G. I. Sivashinsky, Astron. Acta 15, 313 (1970).

    Google Scholar 

  10. Ya. B. Zel’dovich, Combust. Flame 39, 211 (1980).

    Article  Google Scholar 

  11. M. A. Liberman, S. M. Golberg, V. V. Bychkov, and L.-E. Ericsson, Combust. Sci. Tech. 136, 221 (1998).

    Article  CAS  Google Scholar 

  12. M. A. Liberman, G. I. Sivashinsky, D. M. Valiev, and L.-E. Ericsson, Int. J. T. Phenom. 8, 253 (2006).

    Google Scholar 

  13. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Pulse Detonation Engines, Ed. by S. M. Frolov (Torus Press, Moscow, 2006), p. 235 [in Russian].

    Google Scholar 

  14. V. A. Gal’burt, M. F. Ivanov, and V. A. Petukhov, Khim. Fiz. 26(2), 46 (2007).

    Google Scholar 

  15. D. R. Stull and H. Prophet, Thermochemical Tables, 2nd ed. (Department of Commerce: Nat. Bureau of Standards, Washington, DC, 1971).

    Google Scholar 

  16. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, Berlin, New York, 2001; Fizmatlit, Moscow, 2003).

    Google Scholar 

  17. O. M. Belotserkovskii and Yu. M. Davydov, The Method of Large Particles in Gas Dynamics. Numerical Experiment (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  18. M. A. Liberman, M. F. Ivanov, O. E. Peil, D. M. Valiev, and L.-E. Eriksson, Combust. Sci. Tech. 177, 151 (2005).

    Article  CAS  Google Scholar 

  19. M. A. Liberman, M. F. Ivanov, D. M. Valiev, and L.-E. Eriksson, Combust. Sci. Tech. 178, 1613 (2006).

    Article  CAS  Google Scholar 

  20. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. 2. Stiff and Differential-Algebraic Problems (Springer, 1991; Mir, Moscow, 1999).

    Google Scholar 

  21. K. A. Kazakov and M. A. Liberman, Phys. Rev. Lett. 88, 064502–1 (2002).

    Article  Google Scholar 

  22. P. Pelce and P. Clavin, J. Fluid Mech. 124, 219 (1982).

    Article  CAS  Google Scholar 

  23. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  24. B. E. Gel’fand, O. E. Popov, and B. B. Chaivanov, Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  25. L. E. Bollinger, M. C. Fong, and R. Edse, ARSJ 31, 588 (1961).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kiverin.

Additional information

Original Russian Text © M.F. Ivanov, A.D. Kiverin, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 2, pp. 48–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.F., Kiverin, A.D. Effect of the composition of the combustible mixture on the development of flame front instability. Russ. J. Phys. Chem. B 4, 110–116 (2010). https://doi.org/10.1134/S1990793110010173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110010173

Keywords

Navigation