Russian Journal of Physical Chemistry B

, Volume 3, Issue 2, pp 211–215 | Cite as

Simulation of the thermal decomposition of the C9H10 methylcubane molecule

Reactivity, Kinetics of Chemical Reactions, Catalysis

Abstract

The thermal stability of the C9H10 methylcubane molecule was studied over the temperature range 1100–2100 K by molecular dynamics simulation with the tight binding potential. The temperature dependence of its lifetime to the decomposition moment was determined. The activation energy E a = 1.7 ± 0.2 eV and frequency factor A = 1015.63 ± 0.53 s−1 of the Arrhenius equation were found. Possible channels and final products of molecule decomposition were studied.

Keywords

Bond Energy Cubane Frequency Factor Propyne Methylstyrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Eaton, Angew. Chem., Int. Ed. Engl. 31, 1421 (1992).CrossRefGoogle Scholar
  2. 2.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).CrossRefGoogle Scholar
  3. 3.
    T. W. Cole, Jr., J. Perkins, S. Putnam, et al., J. Phys. Chem. 85, 2185 (1981).CrossRefGoogle Scholar
  4. 4.
    R. A. Dalterio and F. J. Owens, Solid State Commun. 67, 673 (1988).CrossRefGoogle Scholar
  5. 5.
    E. W. Della, E. F. McCoy, H. K. Patney, et al., J. Am. Chem. Soc. 101, 7441 (1979).CrossRefGoogle Scholar
  6. 6.
    A. S. Pine, A. G. Maki, A. G. Robiette, et al., J. Am. Chem. Soc. 106, 891 (1984).CrossRefGoogle Scholar
  7. 7.
    E. B. Fleischer, J. Am. Chem. Soc. 86, 3889 (1964).CrossRefGoogle Scholar
  8. 8.
    T. Yildirim, S. Ciraci, C. Kilic, and A. Buldum, Phys. Rev. B 62, 7625 (2000).CrossRefGoogle Scholar
  9. 9.
    C. Kilic, T. Yildirim, H. Mehrez, and S. Ciraci, J. Phys. Chem. A 104, 2724 (2000).CrossRefGoogle Scholar
  10. 10.
    J. Almlof and T. Jonvik, Chem. Phys. Lett. 92, 267 (1982).CrossRefGoogle Scholar
  11. 11.
    J. M. Schulman, C. R. Fischer, P. Solomon, and T. J. Venanzi, J. Am. Chem. Soc. 100, 2949 (1978).CrossRefGoogle Scholar
  12. 12.
    T. Yildirim, P. M. Gehring, D. A. Neumann, et al., Phys. Rev. B 60, 314 (1999).CrossRefGoogle Scholar
  13. 13.
    W. Schubert, M. Yoshimine, and J. Pacansky, J. Phys. Chem. 85, 1340 (1981).CrossRefGoogle Scholar
  14. 14.
    J. B. Eckmann, R. L. Wiswell, and E. G. Haberman, in Proc. of the Int. Forum on Space Technology and Applications, Ed. by M. S. El-Genk (AIP, New York, 1998).Google Scholar
  15. 15.
    D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc. 116, 6459 (1994).CrossRefGoogle Scholar
  16. 16.
    S.-Y. Choi, P. E. Eaton, P. F. Hollenberg, et al., J. Am. Chem. Soc. 118, 6547 (1996).CrossRefGoogle Scholar
  17. 17.
    P. E. Eaton, J. Li, and S. P. Upadhyaya, J. Org. Chem. 60, 966 (1995).CrossRefGoogle Scholar
  18. 18.
    P. E. Eaton and Y. C. Yip, J. Am. Chem. Soc. 113, 7692 (1991).CrossRefGoogle Scholar
  19. 19.
    S.-Y. Choi, P. E. Eaton, M. Newcomb, and Y. C. Yip, J. Am. Chem. Soc. 114, 6326 (1992).CrossRefGoogle Scholar
  20. 20.
    R. B. Silverman, J. P. Zhou, and P. E. Eaton, J. Am. Chem. Soc. 115, 8841 (1993).CrossRefGoogle Scholar
  21. 21.
    E. W. Della and P. E. Pigou, J. Am. Chem. Soc. 106, 1085 (1984).CrossRefGoogle Scholar
  22. 22.
    S.-Y. Choi, P. E. Eaton, D. A. Kopp, et al., J. Am. Chem. Soc. 121, 12198 (1999).CrossRefGoogle Scholar
  23. 23.
    Z. Li and S. L. Anderson, J. Phys. Chem. A 107, 1162 (2003).CrossRefGoogle Scholar
  24. 24.
    A. I. Podlivaev, M. M. Maslov, and L. A. Openov, Inzh. Fizika, No. 5, 42 (2007).Google Scholar
  25. 25.
    L. A. Openov and A. I. Podlivaev, Fiz. Tverd. Tela 50, 1146 (2008) [Phys. Solid State 50, 1195 (2008)].Google Scholar
  26. 26.
    I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela 47, 751 (2005) [Phys. Solid State 47, 778 (2005)].Google Scholar
  27. 27.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 217 (2006) [JETP Lett. 84, 185 (2006)].Google Scholar
  28. 28.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 73 (2006) [JETP Lett. 84, 68 (2006)].Google Scholar
  29. 29.
    L. A. Openov, I. V. Davydov, and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 85, 418 (2007) [JETP Lett. 85, 339 (2007)].Google Scholar
  30. 30.
    D. W. Brenner, Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow State Institute of Engineering Physics (Technical University)MoscowRussia

Personalised recommendations