Skip to main content
Log in

Partial oxidation of methane in a rapid compression machine with internal heat recovery

  • Jubilee Scientific Conference of the Division of Combustion and Explosion
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A new method for the partial oxidation of methane in a rapid compression machine with internal heat recovery was proposed and examined. A rapid compression machine on the basis of an internal combustion engine with a cylinder divided by a partition with a crossflow orifice into two chambers was considered. Internal heat recovery was implemented using a thermal activator installed in the smaller (auxiliary) chamber. Calculations demonstrated that this method makes it possible to convert methane in methane-air mixtures with a hydrocarbon content of up to 24% at degrees of compression of 10 to 20 and peak pressures below 200 atm. A region (determined by the crossflow orifice diameter and degree of compression) within which a heat recovery cycle exists was revealed. It was demonstrated that, for mixtures containing 22% methane or less, the extent of conversion exceeds 93%, a value that makes it possible to generate useful energy at degrees of compression above 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Kolbanovskii, V. S. Shchipachev, N. Ya. Chernyak, et al., Pulse Compression of Gases in Chemistry and Technology (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  2. V. Ya. Aladyshkin, V. N. Genkin, A. D. Mansfel’d, et al., Neftekhimiya 43(2), 105 (2003) [Pet. Chem. 43 (2), 89 (2003)].

    CAS  Google Scholar 

  3. V. M. Nikolaev and V. M. Shmelev, in Proc. I Conference on Innovation Activity (IVTAN, Moscow, 2005), p. 218 [in Russian].

    Google Scholar 

  4. V. N. Genkin, M. V. Genkin, D. V. Zaborskikh, and Yu. A. Kolbanovskii, RF Patent No. 2120913, Byull. Izobret., No. 30 (1998).

  5. V. R. Grunval’d, Yu. L. Dolinskii, S. E. Piskunov, et al., RF Patent No. 2096313, Byull. Izobret., No. 32 (1997).

  6. V. M. Shmelev and V. M. Nikolaev, Problemy Mashinostroeniya Avtomatizatsii, No. 4, 57 (2002).

  7. V. M. Nikolaev and V. M. Shmelev, in Proc. X Int. Symp. “Fundamental and Applied Problems of Improvement of Reciprocating Engines” (Vladimirsk. Gos. Univ., Vladimir, 2005), p. 42; CD paper no. 05-01-043 [in Russian].

    Google Scholar 

  8. V. M. Nikolaev, V. M. Shmelev, and A. D. Margolin, in Proceedingd of X International Symposium “Fundamental and Applied Problems of Improvement of Reciprocating Engines” (Vladimirsk. Gos. Univ., Vladimir, 2005), p. 43; CD paper no. 05-01-044 [in Russian].

    Google Scholar 

  9. F. Durst and M. Weclas, Proc. Inst. Mech. Eng., Part D 215, 63 (2001).

    Article  Google Scholar 

  10. V. M. Zamanskii and A. A. Borisov, Itogi Nauki Tekhn., Ser. Kinet. Katal. 19, 156 (1989).

    Google Scholar 

  11. G. I. Kozlov, in Proc. 3rd All-Union Meeting on the Theory of Combustion (Akad. Nauk SSSR, Moscow, 1960), Vol. 1, p. 30 [in Russian].

    Google Scholar 

  12. A. Nemeth and R. Sawyer, J. Phys. Chem. 73(7), 2421 (1969).

    Article  CAS  Google Scholar 

  13. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 17(9), 112 (1998).

    CAS  Google Scholar 

  14. A. V. Evlampiev, S. M. Frolov, V. Ya. Basevich, and A. A. Belyaev, Khim. Fiz. 20(11), 21 (2001).

    CAS  Google Scholar 

  15. Z. A. Mansurov, Fiz. Goreniya Vzryva 41(6), 137 (2005).

    CAS  Google Scholar 

  16. V. M. Shmelev and V. M. Nikolaev, Teor. Osnovy Khim. Tekhnol. 42(1), 21 (2008).

    Google Scholar 

  17. V. M. Shmelev, V. M. Nikolaev, and V. S. Ilyukhin, Khim. Fiz. 25(7), 42 (2006).

    CAS  Google Scholar 

  18. J. I. Ramos, Internal Combustion Engine Modelling (HPB, New York, 1989).

    Google Scholar 

  19. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, Properties of Gases and Liquids (McGraw-Hill, New York, 1977; Khimiya, Leningrad, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shmelev.

Additional information

Original Russian Text © V.M. Shmelev, V.M. Nikolaev, 2008, published in Khimicheskaya Fizika, 2008, Vol. 27, No. 6, pp. 20–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shmelev, V.M., Nikolaev, V.M. Partial oxidation of methane in a rapid compression machine with internal heat recovery. Russ. J. Phys. Chem. B 2, 431–436 (2008). https://doi.org/10.1134/S1990793108030160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793108030160

Keywords

Navigation