Skip to main content
Log in

A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas

  • Nanoparticles
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A theoretical global model is presented for describing the kinetics of generation and growth of clusters and nanoparticles in low-pressure plasmas, where important processes for clusters and grains are collisions with monomers, electrons, and ions and particle coagulation and loss because of diffusion and gas flow drag. Simple equations are given for calculations of monomer density, particle-size distribution function, critical cluster size, the rate of particle production and particle density and mean size, and plasma characteristics (the densities and average energies of “cold” and “hot” electrons and the density of positively charged ions). The model is self-consistent; that is, the above-mentioned properties of clusters, nanoparticles, electrons, and ions are calculated jointly from coupled equations as functions of a small number of radio frequency (RF) discharge parameters (discharge geometry; absorbed electric power; voltage across the RF sheath; gas pressure; composition; and flow rate). Comparisons are made with the experimental data on SiH4-Ar mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusty Plasma, Ed. by A. Bouchoule (Wiley, New York, 2000).

    Google Scholar 

  2. Special issue: Plasma Sources Sci. Technol. 3(3) (1994).

    Google Scholar 

  3. L. Boufendi, A. Plain, J. Ph. Blondeau, et al., Appl. Phys. Lett. 60, 169 (1992).

    Article  Google Scholar 

  4. A. Bouchoule and L. Boufendi, Plasma Sources Sci. Technol. 2, 204 (1993).

    Article  CAS  Google Scholar 

  5. L. Boufendi, J. Hermann, A. Bouchoule, et al., J. Appl. Phys. 76, 148 (1994).

    Article  CAS  Google Scholar 

  6. L. Boufendi and A. Bouchoule, Plasma Sources Sci. Technol. 3, 262 (1994).

    Article  CAS  Google Scholar 

  7. L. Boufendi, A. Bouchoule, and T. Hbid, J. Vac. Sci. Technol., A 14(2), 572 (1996).

    Article  CAS  Google Scholar 

  8. H. Kawasaki, K. Sakamoto, S. Maeda, et al., Jpn. J. Appl. Phys. 37, 5757 (1998).

    Article  CAS  Google Scholar 

  9. Ch. Hollenstein, J.-L. Dorier, J. Dutta, et al., Plasma Sources Sci. Technol. 3, 278 (1994).

    Article  CAS  Google Scholar 

  10. C. Courteille, Ch. Hollenstein, J.-L. Dorier, et al., J. Appl. Phys. 80, 2069 (1996).

    Article  CAS  Google Scholar 

  11. M. Kushner, J. Appl. Phys. 63, 2532 (1998).

    Article  Google Scholar 

  12. J. Perrin, C. Bohm, R. Etemadi, and A. Lloret, Plasma Sources Sci. Technol. 3, 252 (1994).

    Article  CAS  Google Scholar 

  13. S. Choi and M. Kushner, J. Appl. Phys. 74, 853 (1993).

    Article  CAS  Google Scholar 

  14. A. Fridman, L. Boufendi, T. Hbid, et al., J. Appl. Phys. 79, 1303 (1996).

    Article  CAS  Google Scholar 

  15. D. Lemons, R. Keinigs, D. Winske, and M. Jones, Appl. Phys. Lett. 68, 613 (1996).

    Article  CAS  Google Scholar 

  16. V. Schweigert and I. Schweigert, J. Phys. D: Appl. Phys. 29, 655 (1996).

    Article  CAS  Google Scholar 

  17. T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995).

    Article  CAS  Google Scholar 

  18. V. Fortov, A. Khrapak, S. Khrapak, et al., Usp. Fiz. Nauk 174, 495 (2004).

    Article  Google Scholar 

  19. B. Gordiets and C. M. Ferreira, J. Appl. Phys. 84, 1231 (1998).

    Article  CAS  Google Scholar 

  20. B. Gordiets and C. M. Ferreira, J. Appl. Phys. 86, 4118 (1999).

    Article  CAS  Google Scholar 

  21. U. Kortshagen and U. Bhandarkar, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 887 (1999).

    CAS  Google Scholar 

  22. U. Bhandarkar, M. Swihart, S. Girshik, and U. Kortshagen, J. Phys. D: Appl. Phys. 33, 2731 (2000).

    Article  CAS  Google Scholar 

  23. K. de Bleecker, A. Bogaerts, and W. Gijbels, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 69, 056409 (2004).

  24. A. Gallagher, A. Howling, and Ch. Hollenstein, J. Appl. Phys. 91, 5571 (2002).

    Article  CAS  Google Scholar 

  25. U. Bhandarkar, U. Kortshagen, and S. Girshik, J. Phys. D: Appl. Phys. 36, 1399 (2003).

    Article  CAS  Google Scholar 

  26. K. de Bleecker, A. Bogaerts, and W. Gijbels, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 70, 056407 (2004).

  27. A. Gallagher, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2690 (2000).

    CAS  Google Scholar 

  28. B. Gordiets, L. Shelepin, and Yu. Shmotkin, Tr. Fiz. Inst. im. P. N. Lebedeva Ross. Akad. Nauk 145, 1391 (1984).

    Google Scholar 

  29. B. Gordiets and Yu. Shmotkin, Khim. Fiz. 4(4), 484 (1985).

    CAS  Google Scholar 

  30. B. Gordiets, A. Osipov, and L. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Gordon and Breach, New York, 1986).

    Google Scholar 

  31. B. Gordiets and E. Bertran, Chem. Phys. Lett. 414, 423 (2005).

    Article  CAS  Google Scholar 

  32. D. Frank-Kamenetskii, Diffusion and Heat Conductivity in Chemical Kinetics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  33. M. Capitelli, C. M. Ferreira, B. Gordiets, and A. Osipov, Plasma Kinetics in Atmospheric Gases (Springer, Berlin, 2000).

    Google Scholar 

  34. V. Godyak and A. Khanneh, IEEE Trans. Plasma Sci. PS-14, 112 (1986).

    Article  CAS  Google Scholar 

  35. Yu. Raizer, M. Shneider, and N. Yatsenko, High-Frequency Capacitive Discharges (Mosk. Fiz.-Tekh. Inst., Moscow, 1995) [in Russian].

    Google Scholar 

  36. A. Lichtenberg, V. Vaheni, and M. Lieberman, J. Appl. Phys. 75, 2339 (1994).

    Article  CAS  Google Scholar 

  37. Physico-Chemical Processes in Gas Dynamics: A Handbook, Ed. by G. Chernyi and S. A. Losev (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  38. J. Perrin, J. Schmitt, G. de Rosny, et al., Chem. Phys. 73, 383 (1982).

    Article  CAS  Google Scholar 

  39. H. Chatham, D. Hils, R. Robertson, and A. Gallagher, J. Chem. Phys. 81, 1770 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Khimicheskaya Fizika, 2008, Vol. 27, No. 4, pp. 79–93.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordiets, B.F., Bertran, E. A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas. Russ. J. Phys. Chem. B 2, 315–328 (2008). https://doi.org/10.1134/S1990793108020243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793108020243

Keywords

Navigation