Skip to main content
Log in

Functionalization of alkanes by gold nanoparticles stabilized by 1-dodecanethiol in organic media

  • Nanoparticles
  • Published:
Russian Journal of Physical Chemistry B, Focus on Physics Aims and scope Submit manuscript

Abstract

It was revealed that gold nanoparticles stabilized by a 1-dodecanethiol monolayer oxidize methane in a methylene chloride medium, presumably by the active oxygen species formed at the surface of the nanoparticles during their synthesis, to yield methanol (in stoichiometric amount), ethane, and an unidentified product. The same nanoparticles in a cyclohexene solution catalyze its oxidation by molecular oxygen to produce oxide (11%), alkylhydroperoxide (84%), and allyl ketone (5%). The only product of methane functionalization in toluene is ethylene. The results obtained on the oxidation of hydrocarbons suggest that, in the presence of gold nanoparticles, oxygen forms various active surface species, the structure of which is discussed. It is also demonstrated that gold nanoparticles catalyze multiple H-D exchange of methane with D2 (but not D+), an observation indicative of the activation of C-H bonds by a gold compound in the low oxidation state (Au0 or Au+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989).

    Article  CAS  Google Scholar 

  2. A. N. Pestryakov and V. V. Lunin, J. Mol. Catal. A: Chem. 158, 325 (2000).

    Article  CAS  Google Scholar 

  3. C. Bianchi, F. Porta, L. Prati, and M. Rossi, Top. Catal. 13, 231 (2000).

    Article  CAS  Google Scholar 

  4. S. Carrettin, P. McMorn, P. Johnston, et al., Chem. Commun., 696 (2002).

  5. G. Lu, D. Ji, G. Qian, et al., Appl. Catal., A 280(2), 175 (2005).

    Google Scholar 

  6. B. E. Solsona, T. Garcia, Ch. Jones, et al., Appl. Catal., A 312, 67 (2006).

    Google Scholar 

  7. R. J. H. Grisel and B. E. Nieuwenhuys, Catal. Today 64(1–2), 69 (2001).

    Article  CAS  Google Scholar 

  8. K. Blick, T. D. Mitrelias, J. S. J. Hargreaves, et al., Catal. Lett. 50(3–4), 211 (1998).

    Article  CAS  Google Scholar 

  9. Caixia Qi, T. Akita, M. Okumura, and M. Haruta, Appl. Catal., A 218, 81 (2001).

    Google Scholar 

  10. “Editorial: Perspective on Industrial and Scientific Aspects of Gold Catalysis”, Appl. Catal., A 243, 201 (2003).

  11. M. Haruta and M. Daté, Appl. Catal., A 222, 427 (2001).

    Google Scholar 

  12. B. Grzybowska-Świerkosz, Catal. Today 112(1–4), 3 (2006).

    Article  CAS  Google Scholar 

  13. Zhengping Haoa, Liangbo Fen, G. Q. Lu, et al., Appl. Catal., A 213, 173 (2001).

    Google Scholar 

  14. Ai-Qin Wanga, Jun-Hong Liua, S. D. Linb, et al., J. Catal. 233(1), 186 (2005).

    Article  CAS  Google Scholar 

  15. M. M. Schubert, S. Hackenberg, A. C. van Veen, et al., J. Catal. 197, 113 (2001).

    Article  CAS  Google Scholar 

  16. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Acc. Chem. Res. 33, 27 (2000).

    Article  CAS  Google Scholar 

  17. Young-Seok Shon, and Hosun Choo, C. R. Acad. Sci., Ser. IIc: Chim. 6(8–10), 1009 (2003).

    CAS  Google Scholar 

  18. T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, et al., J. Phys. Chem. B 101, 7885 (1997).

    Article  CAS  Google Scholar 

  19. V. I. Bukhtiyarov and M. G. Slin’ko, Usp. Khim. 70(2), 167 (2001).

    Google Scholar 

  20. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, et al., J. Phys. Chem. B 101, 3706 (1997).

    Article  CAS  Google Scholar 

  21. E. Boring, Yu. V. Geletii, and C. L. Hill, J. Mol. Catal. A: Chem. 176, 49 (2001).

    Article  CAS  Google Scholar 

  22. D. A. Pichugina, A. F. Shestakov, and N. E. Kuz’menko, in Proceedings of 8th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Belgrade, Serbia, 2006), Vol. 2, p. 674.

    CAS  Google Scholar 

  23. J. T. Groves, J. Chem. Educ. 62(1), 928 (1985).

    Article  CAS  Google Scholar 

  24. E. T. Denisov, in Kinetics of Homogeneous Chemical Reactions (Vysshaya Shkola, Moscow, 1978) [in Russian].

    Google Scholar 

  25. A. Franceschetti, S. J. Pennycook, and S. T. Pantelides, Chem. Phys. Lett. 374, 471 (2003).

    Article  CAS  Google Scholar 

  26. F. Mendizabal, Int. J. Quantum Chem. 73(3), 317 (1999).

    Article  CAS  Google Scholar 

  27. E. T. Denisov and T. G. Denisova, Russ. Chem. Rev. 71(5), 417 (2002).

    Article  CAS  Google Scholar 

  28. E. T. Denisov and I. B. Afanas’ev, in Oxidation and Antioxidants in Organic Chemistry and Biology (Taylor & Francis, Boca Raton, FL, 2005), p. 46.

    Google Scholar 

  29. A. E. Shilov and G. B. Shul’pin, Activation and Catalytic Reactions of Hydrocarbons (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  30. A. C. Gluhoi and B. E. Nieuwenhuys, Catal. Today 119(1–4), 305 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.S. Kulikova, A.F. Shestakov, 2007, published in Khimicheskaya Fizika, 2007, Vol. 26, No. 8, pp. 90–95.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikova, V.S., Shestakov, A.F. Functionalization of alkanes by gold nanoparticles stabilized by 1-dodecanethiol in organic media. Russ. J. Phys. Chem. B 1, 507–511 (2007). https://doi.org/10.1134/S1990793107050119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793107050119

Keywords

Navigation