Skip to main content
Log in

A New Human Uveal Melanoma Cell Line: Melanin Production and Molecular Markers for Targeted Therapy

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

A new human uveal melanoma (UM) cell line uMel1 was established by mechanical disintegration of a tumor fragment. uMel1 cells had a stellate dendrite-like shape, contained a lot of brown melanin pigment, and had a low mitotic index. Optimization of cultivation conditions led to an increase in the rate of cell proliferation and was accompanied by the loss of brown pigment. Since the melanin precursor is L-dihydroxyphenylalanine (L-DOPA), the authors analyzed the cultivation of uMel1 cells in the presence of L-DOPA. When L-DOPA was used at a concentration of 20 μg/mL, causing a decrease in cell viability by no more than 10%, melanocytes uMel1 synthesized melanin. It can be concluded that cultivation in the presence of L-DOPA provides the phenotype of melanin-containing melanocytes of uMel1 personal culture under conditions of long-term cultivation. Analysis of cell adhesion molecules N-cadherin (N-cad), E-cadherin (E-cad), and Mel-CAM, as well as receptors of the epidermal growth factor (ErbB) family by flow cytometry, showed that uMel1 cells have a phenotype of N-cad/E-cad/Mel-CAM+/HER2low/HER3low, and can be used for the study of targeted drugs to Mel-CAM, HER2 and HER3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Collaborative Ocular Melanoma Study Group, Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report no. 26, Arch. Ophthalmol., 2005, vol. 123, pp. 1639–1643. https://doi.org/10.1001/archopht.123.12.1639

    Article  Google Scholar 

  2. Smit, K.N., Jager, M.J., De Klein, A., and Kiliҫ, E., Uveal melanoma: Towards a molecular understanding, Prog. Retinal Eye Res., 2020, vol. 75, p. 100800. https://doi.org/10.1016/j.preteyeres.2019.100800

    Article  Google Scholar 

  3. Souto, E.B., Zielinska, A., Luis, M., Carbone, C., Martins-Gomes, C., Souto, S.B., and Silva, A.M., Uveal melanoma: Physiopathology and new in situ-specific therapies, Cancer Chemother. Pharmacol., 2019, vol. 84, pp. 15–32. https://doi.org/10.1007/s00280-019-03860-z

    Article  CAS  PubMed  Google Scholar 

  4. Amaro, A., Gangemi, R., Piaggio, F., Angelini, G., Barisione, G., Ferrini, S., and Pfeffer, U., The biology of uveal melanoma, Cancer Metastasis Rev., 2017, vol. 36, pp. 109–140. https://doi.org/10.1007/s10555-017-9663-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mouriaux, F., Zaniolo, K., Bergeron, M.-A., Weidmann, C., De La Fouchardière, A., Fournier, F., Droit, A., Morcos, M.W., Landreville, S., and Guérin, S.L., Effects of long-term serial passaging on the characteristics and properties of cell lines derived from uveal melanoma primary tumors, Invest. Ophthalmol. Visual Sci., 2016, vol. 57, p. 5288. https://doi.org/10.1167/iovs.16-19317

    Article  CAS  Google Scholar 

  6. Angi, M., Versluis, M., and Kalirai, H., Culturing uveal melanoma cells, Ocul. Oncol. Pathol., 2015, vol. 1, pp. 126–132. https://doi.org/10.1159/000370150

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aughton, K., Shahidipour, H., Djirackor, L., Coupland, S.E., and Kalirai, H., Characterization of uveal melanoma cell lines and primary tumor samples in 3D culture, Transl. Vision Sci. Tech., 2020, vol. 9, p. 39. https://doi.org/10.1167/tvst.9.7.39

    Article  Google Scholar 

  8. Saakyan, S.V., Tsygankov, A.Yu., Moiseeva, N.I., Karamysheva, A.F., and Garri, D.D., Assessment of the chemosensitivity of uveal melanoma cells ex vivo, Bull. Exp. Biol. Med., 2020, vol. 170, pp. 142–147. https://doi.org/10.1007/s10517-020-05020-3

    Article  CAS  PubMed  Google Scholar 

  9. Jager, M.J., Shields, C.L., Cebulla, C.M., Abdel-Rahman, M.H., Grossniklaus, H.E., Stern, M.-H., Carvajal, R.D., Belfort, R.N., Jia, R., Shields, J.A., et al., Uveal melanoma, Nat. Rev. Dis. Primers, 2020, vol. 6, p. 24. https://doi.org/10.1038/s41572-020-0158-0

    Article  PubMed  Google Scholar 

  10. Bertrand, J.U., Steingrimsson, E., Jouenne, F., Bressac-de Paillerets, B., and Larue, L., Melanoma risk and melanocyte biology, Acta Derm.-Venereol., 2020, vol. 100, p. adv00139. https://doi.org/10.2340/00015555-3494

    Article  CAS  PubMed  Google Scholar 

  11. Trocmé, E., Mougiakakos, D., Johansson, C.C., All-Eriksson, C., Economou, M.A., Larsson, O., Seregard, S., Kiessling, R., and Lin, Y., Nuclear HER3 is associated with favorable overall survival in uveal melanoma, Int. J. Cancer, 2012, vol. 130, pp. 1120–1127. https://doi.org/10.1002/ijc.26118

    Article  CAS  PubMed  Google Scholar 

  12. Amaro, A., Mirisola, V., Angelini, G., Musso, A., Tosetti, F., Esposito, A.I., Perri, P., Lanza, F., Nasciuti, F., Mosci, C., et al., Evidence of epidermal growth factor receptor expression in uveal melanoma: Inhibition of epidermal growth factor-mediated signalling by gefitinib and cetuximab triggered antibody-dependent cellular cytotoxicity, Eur. J. Cancer, 2013, vol. 49, pp. 3353–3365. https://doi.org/10.1016/j.ejca.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  13. Lai, K., Sharma, V., Jager, M.J., Conway, R.M., and Madigan, M.C., Expression and distribution of MUC18 in human uveal melanoma, Virchows Arch., 2007, vol. 451, pp. 967–976. https://doi.org/10.1007/s00428-007-0498-0

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Z., Xu, Q., Zhang, N., Du, X., Xu, G., and Yan, X., CD146, from a melanoma cell adhesion molecule to a signaling receptor, Signal Transduction Targeted Ther., 2020, vol. 5, p. 148. https://doi.org/10.1038/s41392-020-00259-8

    Article  CAS  Google Scholar 

  15. Grieco, C., Kohl, F.R., and Kohler, B., Ultrafast radical photogeneration pathways in eumelanin, Photochem. Photobiol., 2023, vol. 99, pp. 680–692. https://doi.org/10.1111/php.13731

    Article  CAS  PubMed  Google Scholar 

  16. Buszman, E. and Rozanska, R., Interaction of thioridazine with ocular melanin in vitro, Acta Pol. Pharm., 2003, vol. 60, pp. 257–262.

    CAS  PubMed  Google Scholar 

  17. Del Marmol, V., Ito, S., Jackson, I., Vachtenheim, J., Berr, P., Ghanem, G., Morandini, R., Wakamatsu, K., and Huez, G., TRP-1 expression correlates with eu-melanogenesis in human pigment cells in culture, FEBS Lett., 1993, vol. 327, pp. 307–310. https://doi.org/10.1016/0014-5793(93)81010-W

    Article  CAS  PubMed  Google Scholar 

  18. Antunes, L.C.M., Cartell, A., de Farias, C.B., Bakos, R.M., Roesler, R., and Schwartsmann, G., Tropomyosin-related kinase receptor and neurotrophin expression in cutaneous melanoma is associated with a poor prognosis and decreased survival, Oncology, 2019, vol. 97, pp. 26–37. https://doi.org/10.1159/000499384

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, R., Chen, X., Chen, S., Tang, J., Chen, F., Lin, Y., Reinach, P.S., Yan, X., Tu, L., Duan, H., et al., Inhibition of CD146 lessens uveal melanoma progression through reducing angiogenesis and vasculogenic mimicry, Cell. Oncol., 2022, vol. 45, pp. 557–572. https://doi.org/10.1007/s13402-022-00682-9

    Article  CAS  Google Scholar 

  20. Kuphal, S. and Bosserhoff, A.K., E-cadherin cell–cell communication in melanogenesis and during development of malignant melanoma, Arch. Biochem. Biophys., 2012, vol. 524, pp. 43–47. https://doi.org/10.1016/j.abb.2011.10.020

    Article  CAS  PubMed  Google Scholar 

  21. Lade-Keller, J., Riber-Hansen, R., Guldberg, P., Schmidt, H., Hamilton-Dutoit, S.J., and Steiniche, T., E- to N-cadherin switch in melanoma is associated with decreased expression of phosphatase and tensin homolog and cancer progression, Br. J. Dermatol., 2013, vol. 169, pp. 618–628. https://doi.org/10.1111/bjd.12426

    Article  CAS  PubMed  Google Scholar 

  22. Delgado-Bellido, D., Zamudio-Martínez, E., Fernández-Cortés, M., Herrera-Campos, A.B., Olmedo-Pelayo, J., Perez, C.J., Expósito, J., De Álava, E., Amaral, A.T., Valle, F.O., et al., VE-cadherin modulates β-catenin/TCF-4 to enhance vasculogenic mimicry, Cell Death Dis., 2023, vol. 14, p. 135. https://doi.org/10.1038/s41419-023-05666-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croce, M., Ferrini, S., Pfeffer, U., and Gangemi, R., Targeted therapy of uveal melanoma: Recent failures and new perspectives, Cancers, 2019, vol. 11, p. 846. https://doi.org/10.3390/cancers11060846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kassumeh, S., Arrow, S., Kafka, A., Luft, N., Priglinger, S.G., Wolf, A., Eibl-Lindner, K., and Wertheimer, C.M., Pharmacological drug screening to inhibit uveal melanoma metastatic cells either via EGF-R, MAPK, mTOR or PI3K, Int. J. Ophthalmol., 2022, vol. 15, p. 1569.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sigismund, S., Avanzato, D., and Lanzetti, L., Emerging functions of the EGFR in cancer, Mol. Oncol., 2018, vol. 12, pp. 3–20. https://doi.org/10.1002/1878-0261.12155

    Article  PubMed  Google Scholar 

  26. Forsberg, E.M.V., Lindberg, M.F., Jespersen, H., Alsén, S., Bagge, R.O., Donia, M., Svane, I.M., Nilsson, O., Ny, L., Nilsson, L.M., et al., HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy–resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice, Cancer Res., 2019, vol. 79, pp. 899–904. https://doi.org/10.1158/0008-5472.CAN-18-3158

    Article  CAS  PubMed  Google Scholar 

  27. Burgess, B.L., Rao, N.P., Eskin, A., Nelson, S.F., and McCannel, T.A., Characterization of three cell lines derived from fine needle biopsy of choroidal melanoma with metastatic outcome, Mol. Vision, 2011, vol. 17, pp. 607–615.

    CAS  Google Scholar 

  28. Pardo, M., Piñeiro, A., De La Fuente, M., García, A., Prabhakar, S., Zitzmann, N., Dwek, R.A., Sánchez-Salorio, M., Domínguez, F., and Capeans, C., Abnormal cell cycle regulation in primary human uveal melanoma cultures, J. Cell. Biochem., 2004, vol. 93, pp. 708–720. https://doi.org/10.1002/jcb.20230

Download references

Funding

The research was supported by the Russian Science Foundation (project no. 23-14-00285) (establishment of the cell culture and characterization of molecular markers) and the budget funding project of the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences (no. 121030200173-6) (experiments with L-DOPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Koval.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All studies involving humans were conducted in accordance with the principles of biomedical ethics as outlined in the 1964 Declaration of Helsinki and its later amendments. They were also approved by the ethical committee of the Novosibirsk Branch of Fedorov National Medical Research Center Interdisciplinary Scientific and Technical Complex Eye Microsurgery. Informed consent to participate in the study was obtained from all study participants.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: a/a, antibiotic-antimycotic; UM, uveal melanoma; CAR, chimeric antigen receptor; E-cad, cadherin E; N‑cad, cadherin N; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; HER2, HER3, human epidermal growth factor receptor 2, 3; L-DOPA, L-dihydroxyphenylalanine; Mel-CAM, surface glycoprotein, melanoma cell adhesion molecule; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; PBS, phosphate buffer saline; VEGF-A, vascular endothelial growth factor A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilnikova, M.V., Novak, D.D., Troitskaya, O.S. et al. A New Human Uveal Melanoma Cell Line: Melanin Production and Molecular Markers for Targeted Therapy. Biochem. Moscow Suppl. Ser. B 17, 165–171 (2023). https://doi.org/10.1134/S1990750823600607

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750823600607

Keywords:

Navigation