Skip to main content
Log in

Adaptation and Experimental Validation of Clinical RNA Sequencing Protocol Oncobox for MGI DNBSEQ-G50 Platform

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

RNA sequencing (RNAseq) is currently a method of choice for the high-throughput RNA-level analysis of gene expression. Furthermore, RNAseq data can be used for the prediction of numerous cancer biomarkers e.g. microsatellite instability, tumor mutational burden, gene signatures, and immunohistochemical markers expression. In this analysis, central step is comparison with the pre-existing pool of normal/healthy control tissue profiles. However, technically different RNAseq platforms and protocols usually provide poorly compatible gene expression outputs that can be difficult to pool together and analyze in a direct comparison due to platform/protocol-specific bias. We recently published Oncobox RNA sample preparation and sequencing protocol for Illumina platform that can be used for the analysis of gene expression in cancer molecular diagnostics to personalize treatments, as validated in preclinical and clinical studies. Here we report adaptation of this protocol for DNBSEQ-G50 engine of a competitor MGI sequencing platform. We demonstrate common clustering and similar gene expression portraits for the RNAseq profiles obtained for the same 16 formalin-fixed, paraffin-embedded model experimental cancer biosamples using both Illumina and MGI sequencing platforms. The adopted Oncobox protocol enables retention of the case-to-normal ratios, calculated values of molecular pathway activation, and also of predicted cancer drug efficiency scores. Our findings suggest clinical applicability of Oncobox molecular diagnostics with both Illumina and MGI sequencing platforms. This also evidence that no specific data harmonization is needed to compare the molecular profiles obtained with either platform when using the Oncobox protocol, e.g. with the previously published ANTE experimental panel of normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Buzdin, A., Sorokin, M., Garazha, A., Glusker, A., Aleshin, A., et al., RNA sequencing for research and diagnostics in clinical oncology, Semin. Cancer Biol., 2020, vol. 60, pp. 311–323. https://doi.org/10.1016/j.semcancer.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., et al., Spatial transcriptomics: Technologies, applications and experimental considerations, Genomics, 2023, vol. 115, no. 5, p. 110671. https://doi.org/10.1016/j.ygeno.2023.110671

    Article  CAS  PubMed  Google Scholar 

  3. Szeto, C.W., Kurzrock, R., Kato, S., Goloubev, A., Veerapaneni, S., et al., Association of differential expression of immunoregulatory molecules and presence of targetable mutations may inform rational design of clinical trials, ESMO Open, 2022, vol. 7, no. 1, p. 100396. https://doi.org/10.1016/j.esmoop.2022.100396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Samii, A., Sorokin, M., Kar, S., Makovskaia, L., Garazha, A., et al., Case of multifocal glioblastoma with four fusion transcripts of ALK, FGFR2, NTRK2, and NTRK3 genes stresses the need for tumor tissue multisampling for transcriptomic analysis, Cold Spring Harbor Mol. Case Stud., 2021, vol. 7, no. 4, p. a006100. https://doi.org/10.1101/mcs.a006100

    Article  CAS  Google Scholar 

  5. Tsimberidou, A.M., Fountzilas, E., Bleris, L., and Kurzrock, R., Transcriptomics and solid tumors: The next frontier in precision cancer medicine, Semin. Cancer Biol., 2022, vol. 84, pp. 50–59. https://doi.org/10.1016/j.semcancer.2020.09.007

    Article  CAS  PubMed  Google Scholar 

  6. Lazar, V., Zhang, B., Magidi, S., Le Tourneau, C., Raymond, E., et al., A transcriptomics approach to expand therapeutic options and optimize clinical trials in oncology, Ther. Adv. Med. Oncol., 2023, vol. 15, p. 17588359231156382. https://doi.org/10.1177/17588359231156382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorokin, M., Buzdin, A.A., Guryanova, A., Efimov, V., Suntsova, M.V., et al., Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers, Comput. Struct. Biotechnol. J., 2023, vol. 21, pp. 3964–3986. https://doi.org/10.1016/j.csbj.2023.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carithers, L.J., Ardlie, K., Barcus, M., Branton, P.A., Britton, A., et al., A novel approach to high-quality postmortem tissue procurement: The GTEx project, Biopreserv. Biobanking, 2015, vol. 13, no. 5, pp. 311–319. https://doi.org/10.1089/bio.2015.0032

    Article  Google Scholar 

  9. Suntsova, M., Gaifullin, N., Allina, D., Reshetun, A., Li, X., et al., Atlas of RNA sequencing profiles for normal human tissues, Sci. Data, 2019, vol. 6, no. 1, p. 36. https://doi.org/10.1038/s41597-019-0043-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sorokin, M., Gorelyshev, A., Efimov, V., Zotova, E., Zolotovskaia, M., et al., RNA sequencing data for FFPE tumor blocks can be used for robust estimation of tumor mutation burden in individual biosamples, Front. Oncol., 2021, vol. 11, p. 732644. https://doi.org/10.3389/fonc.2021.732644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Markham, J.F., Fellowes, A.P., Green, T., et al., Predicting response to immune checkpoint blockade in NSCLC with tumour-only RNA-seq, Br. J. Cancer, 2023, vol. 128, pp. 1148–1154. https://doi.org/10.1038/s41416-022-02105-w

    Article  CAS  PubMed  Google Scholar 

  12. Sorokin, M., Rabushko, E., Efimov, V., Poddubskaya, E., Sekacheva, M., et al., Experimental and meta-analytic validation of RNA sequencing signatures for predicting status of microsatellite instability, Front. Mol. Biosci., 2021, vol. 8, p. 737821. https://doi.org/10.3389/fmolb.2021.737821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Na, W., Lee, I.J., Koh, I., Kwon, M., Song, Y.S., et al., Cancer-specific functional profiling in microsatellite-unstable (MSI) colon and endometrial cancers using combined differentially expressed genes and biclustering analysis, Medicine (Baltimore), 2023, vol. 102, no. 19, p. e33647. https://doi.org/10.1097/MD.0000000000033647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, L., Zhang, J., Ye, Y., Shi, Z., Huang, Y., et al., Construction of a novel cancer-associated fibroblast-related signature to predict clinical outcome and immune response in colon adenocarcinoma, Aging (N. Y.), 2023, vol. 15, no. 18, pp. 9521–9543. https://doi.org/10.18632/aging.205032

    Article  Google Scholar 

  15. Sorokin, M., Ignatev, K., Poddubskaya, E., Vladimirova, U., Gaifullin, N., et al., RNA sequencing in comparison to immunohistochemistry for measuring cancer biomarkers in breast cancer and lung cancer specimens, Biomedicines, 2020, vol. 8, no. 5, p. 114. https://doi.org/10.3390/biomedicines8050114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pedersen, C.B., Campos, B., Krishnan, N.M., Panda, B., Vitting-Seerup, K., et al., Building flexible and robust analysis frameworks for molecular subtyping of cancers, bioRxiv, 2023, p. 538907.https://doi.org/10.1101/2023.05.01.538907

  17. McAvera, R., Quinn, J., Murphy, P., and Glavey, S., Genetic abnormalities in extramedullary multiple myeloma, Int. J. Mol. Sci., 2023, vol. 24, no. 14, p. 11259. https://doi.org/10.3390/ijms241411259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sorokin, M., Kholodenko, I., Kalinovsky, D., Shamanskaya, T., Doronin, I., et al., RNA sequencing-based identification of ganglioside GD2-positive cancer phenotype, Biomedicines, 2020, vol. 8, no. 6, p. 142. https://doi.org/10.3390/biomedicines8060142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamyan, L., Aznaurova, Y., Stepanian, A., Nikitin, D., Garazha, A., et al., Gene expression signature of endometrial samples from women with and without endometriosis, J. Minimally Invasive Gynecol., 2021, vol. 28, no. 10, pp. 1774–1785. https://doi.org/10.1016/j.jmig.2021.03.011

    Article  Google Scholar 

  20. Borisov, N., Sergeeva, A., Suntsova, M., Raevskiy, M., Gaifullin, N., et al., Machine learning applicability for classification of PAD/VCD chemotherapy response using 53 multiple myeloma RNA sequencing profiles, Front. Oncol., 2021, vol. 11, p. 652063. https://doi.org/10.3389/fonc.2021.652063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsyganov, M.M., Rodionov, E.O., Ibragimova, M.K., Miller, S.V., Cheremisina, O.V., et al., Personalized prescription of chemotherapy based on assessment of mRNA expression of BRCA1, RRM1, ERCC1, TOP1, TOP2α, TUBβ3, TYMS, and GSTP1 genes in tumors compared to standard chemotherapy in the treatment of non-small-cell lung cancer, J. Pers. Med., 2022, vol. 12, no. 10, p. 1647. https://doi.org/10.3390/jpm12101647

    Article  PubMed  PubMed Central  Google Scholar 

  22. Castellano, G., Giugliano, F., Curigliano, G., and Marra, A., Clinical utility of genomic signatures for the management of early and metastatic triple-negative breast cancer, Curr. Opin. Oncol., 2023, vol. 35, no. 6, pp. 479–490. https://doi.org/10.1097/CCO.0000000000000989

    Article  CAS  PubMed  Google Scholar 

  23. Pustovalova, M., Malakhov, P., Guryanova, A., Sorokin, M., Suntsova, M., et al., Transcriptome-based traits of radioresistant sublines of non-small cell lung cancer cells, Int. J. Mol. Sci., 2023, vol. 24, no. 3, p. 3042. https://doi.org/10.3390/ijms24033042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skvortsova, I.I. and Span, P.N., Editorial: Advances in biological understanding of tumor radiation resistance, Front. Oncol., 2020, vol. 10, p. 754. https://doi.org/10.3389/fonc.2020.00754

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beretta, G.L. and Zaffaroni, N., Radiotherapy-induced ferroptosis for cancer treatment, Front. Mol. Biosci., 2023, vol. 10, p. 1216733. https://doi.org/10.3389/fmolb.2023.1216733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, Q., Izumchenko, E., Aliper, A.M., Makarev, E., Paz, K., et al., Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients, Hum. Genome Var., 2015, vol. 2, p. 15009. https://doi.org/10.1038/hgv.2015.9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gudkov, A., Shirokorad, V., Kashintsev, K., Sokov, D., Nikitin, D., et al., Gene expression-based signature can predict sorafenib response in kidney cancer, Front. Mol. Biosci., 2022, vol. 9, p. 753318. https://doi.org/10.3389/fmolb.2022.753318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J.S., Nair, N.U., Dinstag, G., Chapman, L., Chung, Y., et al., Synthetic lethality-mediated precision oncology via the tumor transcriptome, Cell, 2021, vol. 184, no. 9, pp. 2487–2502.e13. https://doi.org/10.1016/j.cell.2021.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Locatelli, G., Bosotti, R., Ciomei, M., Brasca, M.G., Calogero, R., et al., Transcriptional analysis of an E2F gene signature as a biomarker of activity of the cyclin-dependent kinase inhibitor PHA-793887 in tumor and skin biopsies from a phase I clinical study, Mol. Cancer Ther., 2010, vol. 9, no. 5, pp. 1265–1273. https://doi.org/10.1158/1535-7163.MCT-09-1163

    Article  CAS  PubMed  Google Scholar 

  30. Barzegar Behrooz, A., Latifi-Navid, H., da Silva Rosa, S.C., Swiat, M., Wiechec, E., et al., Integrating multi-omics analysis for enhanced diagnosis and treatment of glioblastoma: A comprehensive data-driven approach, Cancers (Basel), 2023, vol. 15, no. 12, p. 3158. https://doi.org/10.3390/cancers15123158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, E.L., Sorokin, M., Kantelhardt, S.R., Kalasauskas, D., Sprang, B., et al., Intratumoral heterogeneity and longitudinal changes in gene expression predict differential drug sensitivity in newly diagnosed and recurrent glioblastoma, Cancers (Basel), 2020, vol. 12, no. 2, p. 520. https://doi.org/10.3390/cancers12020520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sorokin, M., Rabushko, E., Rozenberg, J.M., Mohammad, T., Seryakov, A., et al., Clinically relevant fusion oncogenes: Detection and practical implications, Ther. Adv. Med. Oncol., 2022, vol. 14, p. 17588359221144108. https://doi.org/10.1177/17588359221144108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Belzen, I., Cai, C., van Tuil, M., Badloe, S., Strengman, E., et al., Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq and WGS, BMC Cancer, 2023, vol. 23, no. 1, p. 618. https://doi.org/10.1186/s12885-023-11054-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rabushko, E., Sorokin, M., Suntsova, M., Seryakov, A.P., Kuzmin, D.V., et al., Experimentally deduced criteria for detection of clinically relevant fusion 3' oncogenes from FFPE bulk RNA sequencing data, Biomedicines, 2022, vol. 10, no. 8, p. 1866. https://doi.org/10.3390/biomedicines10081866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, X. and Wang, C.Y., From bulk, single-cell to spatial RNA sequencing, Int. J. Oral Sci., 2021, vol. 13, no. 1, p. 36. https://doi.org/10.1038/s41368-021-00146-0

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Zaitsev, A., Chelushkin, M., Dyikanov, D., Cheremushkin, I., Shpak, B., et al., Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes, Cancer Cell, 2022, vol. 40, no. 8, pp. 879–894.e16. https://doi.org/10.1016/j.ccell.2022.07.006

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y., Mashock, M., Tong, Z., Mu, X., Chen, H., et al., Changing technologies of RNA sequencing and their applications in clinical oncology, Front. Oncol., 2020, vol. 10, p. 447. https://doi.org/10.3389/fonc.2020.00447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zolotovskaia, M.A., Tkachev, V.S., Guryanova, A.A., Simonov, A.M., Raevskiy, M.M., et al., OncoboxPD: Human 51 672 molecular pathways database with tools for activity calculating and visualization, Comput. Struct. Biotechnol. J., 2022, vol. 20, pp. 2280–2291. https://doi.org/10.1016/j.csbj.2022.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozerov, I.V., Lezhnina, K.V., Izumchenko, E., Artemov, A.V., Medintsev, S., et al., In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development, Nat. Commun., 2016, vol. 7, p. 13427. https://doi.org/10.1038/ncomms13427

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lazar, V., Rubin, E., Depil, S., Pawitan, Y., Martini, J.F., et al., A simplified interventional mapping system (SIMS) for the selection of combinations of targeted treatments in non-small cell lung cancer, Oncotarget, 2015, vol. 6, no. 16, pp. 14139–14152. https://doi.org/10.18632/oncotarget.3741

    Article  PubMed  PubMed Central  Google Scholar 

  41. Artemov, A., Aliper, A., Korzinkin, M., Lezhnina, K., Jellen, L., et al., A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation, Oncotarget, 2015, vol. 6, no. 30, pp. 29347–29356. https://doi.org/10.18632/oncotarget.5119

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tkachev, V., Sorokin, M., Garazha, A., Borisov, N., and Buzdin, A., Oncobox method for scoring efficiencies of anticancer drugs based on gene expression data, Methods Mol. Biol., 2020, pp. 235–255. https://doi.org/10.1007/978-1-0716-0138-9_17

  43. Solomon, B., Callejo, A., Bar, J., Berchem, G., Bazhenova, L., et al., A WIN Consortium phase I study exploring avelumab, palbociclib, and axitinib in advanced non-small cell lung cancer, Cancer Med., 2022, vol. 11, no. 14, pp. 2790–2800. https://doi.org/10.1002/cam4.4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Poddubskaya, E.V., Baranova, M.P., Allina, D.O., Smirnov, P.Y., Albert, E.A., et al., Personalized prescription of tyrosine kinase inhibitors in unresectable metastatic cholangiocarcinoma, Exp. Hematol. Oncol., 2018, vol. 6, pp. 7–21. https://doi.org/10.1186/s40164-018-0113-x

    Article  Google Scholar 

  45. Moisseev, A., Albert, E., Lubarsky, D., Schroeder, D., and Clark, J., Transcriptomic and genomic testing to guide individualized treatment in chemoresistant gastric cancer case, Biomedicines, 2020, vol. 8, no. 3, p. 67. https://doi.org/10.3390/biomedicines8030067

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rodon, J., Soria, J.C., Berger, R., Miller, W.H., Rubin, E., et al., Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial, Nat. Med., 2019, vol. 25, no. 5, pp. 751–758. https://doi.org/10.1038/s41591-019-0424-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poddubskaya, E., Sorokin, M., Garazha, A., Glusker, A., Moisseev, A., et al., J. Clin. Oncol., 2020, vol. 38, no. 15. https://doi.org/10.1200/JCO.2020.38.15_suppl.e13676

  48. Aran, D., Camarda, R., Odegaard, J., et al., Comprehensive analysis of normal adjacent to tumor transcriptomes, Nat. Commun., 2017, vol. 8, p. 1077. https://doi.org/10.1038/s41467-017-01027-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lonsdale, J., Thomas, J., Salvatore, M., et al., The genotype-tissue expression (GTEx) project, Nat. Genet., 2013, vol. 45, pp. 580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  50. Borisov, N., Tkachev, V., Simonov, A., Sorokin, M., Kim, E., et al., Uniformly shaped harmonization combines human transcriptomic data from different platforms while retaining their biological properties and differential gene expression patterns, Front. Mol. Biosci., 2023, vol. 10, p. 1237129. https://doi.org/10.3389/fmolb.2023.1237129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fouché, A. and Zinovyev, A., Omics data integration in computational biology viewed through the prism of machine learning paradigms, Front. Bioinf., 2023, vol. 3, p. 1191961. https://doi.org/10.3389/fbinf.2023.1191961

    Article  Google Scholar 

  52. Buzdin, A., Tkachev, V., Zolotovskaia, M., Garazha, A., Moshkovskii, S., et al., Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways, Adv. Protein Chem. Struct. Bi-ol., 2021, vol. 127, pp. 1–53. https://doi.org/10.1016/bs.apcsb.2021.02.005

    Article  CAS  Google Scholar 

  53. Zolotovskaia, M.A., Modestov, A.A., Suntsova, M.V., Rachkova, A.A., Koroleva, E.V., et al., Pan-cancer antagonistic inhibition pattern of ATM-driven G2/M checkpoint pathway vs other DNA repair pathways, DNA Repair, 2023, vol. 123, p. 103448. https://doi.org/10.1016/j.dnarep.2023.103448

    Article  CAS  PubMed  Google Scholar 

  54. Sorokin, M., Poddubskaya, E., Baranova, M., Glusker, A., Kogoniya, L., et al., RNA sequencing profiles and diagnostic signatures linked with response to ramucirumab in gastric cancer, Cold Spring Harbor Mol. Case Stud., 2020, vol. 6, no. 2, p. a004945. https://doi.org/10.1101/mcs.a004945

    Article  CAS  Google Scholar 

  55. Seryakov, A., Magomedova, Z., Suntsova, M., Prokofieva, A., Rabushko, E., et al., RNA sequencing for personalized treatment of metastatic leiomyosarcoma: Case report, Front. Oncol., 2021, vol. 11, p. 666001. https://doi.org/10.3389/fonc.2021.666001

    Article  PubMed  PubMed Central  Google Scholar 

  56. Poddubskaya, E.V., Baranova, M.P., Allina, D.O., Sekacheva, M.I., Makovskaia, L.A., et al., Personalized prescription of imatinib in recurrent granulosa cell tumor of the ovary: Case report, Cold Spring Harbor Mol. Case Stud., 2019, vol. 5, no. 2, p. a003434. https://doi.org/10.1101/mcs.a003434

    Article  Google Scholar 

  57. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., et al., STAR: Ultrafast universal RNA-seq aligner, Bioinformatics, 2013, vol. 1, pp. 15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  Google Scholar 

  58. Love, M.I., Huber, W., and Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 2014, vol. 15, no. 12, p. 550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goodwin, S., McPherson, J.D., and McCombie, W.R., Coming of age: Ten years of next-generation sequencing technologies, Nat. Rev. Genet., 2016, vol. 17, pp. 333–351.  https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patch, A.M., Nones, K., Kazakoff, S.H., Newell, F., Wood, S., et al., Germline and somatic variant identification using BGISEQ-500 and HiSeq X Ten whole genome sequencing, PLoS One, 2018, vol. 13, p. e0190264.  https://doi.org/10.1371/journal.pone.0190264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun, Y., Yuan, J., Wu, L., Li, M., Cui, X., et al., Panel-based NGS reveals disease-causing mutations in hearing loss patients using BGISEQ-500 platform, Medicine (Baltimore), 2019, vol. 98, p. e14860. https://doi.org/10.1097/MD.0000000000014860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu, Y., Lin, Z., Tang, C., Tang, Y., Cai, Y., et al., A new massively parallel nanoball sequencing platform for whole exome research, BMC Bioinf., 2019, vol. 20, p. 153. https://doi.org/10.1186/s12859-019-2751-3

    Article  Google Scholar 

  63. Fehlmann, T., Reinheimer, S., Geng, C., Su, X., Drmanac, S., et al., cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs, Clin. Epigenet., 2016, vol. 8, p. 123. https://doi.org/10.1186/s13148-016-0287-1

    Article  CAS  Google Scholar 

  64. Fang, C., Zhong, H., Lin, Y., Chen, B., Han, M., et al., Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing, Gigascience, 2018, vol. 7, p. gix133.https://doi.org/10.1093/gigascience/gix133

  65. Senabouth, A., Andersen, S., Shi, Q., Shi, L., Jiang, F., et al., Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing, NAR Genomics Bioinf., 2020, vol. 2, no. 2, p. lqaa034. https://doi.org/10.1093/nargab/lqaa034

  66. Wang, G., Kitaoka, T., Crawford, A., Mao, Q., Hesketh, A., et al., Cross-platform transcriptomic profiling of the response to recombinant human erythropoietin, Sci. Rep., 2021, vol. 11, no. 1, p. 21705. https://doi.org/10.1038/s41598-021-00608-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, Y., Fehlmann, T., Borcherding, A., Drmanac, S., Liu, S., et al., CoolMPS: Evaluation of antibody labeling based massively parallel non-coding RNA sequencing, Nucleic Acids Res., 2021, vol. 49, no. 2, p. e10. https://doi.org/10.1093/nar/gkaa1122

    Article  CAS  PubMed  Google Scholar 

  68. Jeon, S.A., Park, J.L., Kim, J.-H., Kim, J.H., Kim, Y.S., et al., Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing, Genomics Inf., 2019, vol. 17, no. 3, p. e32. https://doi.org/10.5808/GI.2019.17.3.e32

    Article  Google Scholar 

Download references

Funding

This work was supported by the Priority 2030 program under the project “Establishment of a regional center for oncogenetic research on the basis of the Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation of the strategic project “Fundamental Oncology,” approved by the order of April 1, 2022 no. “85/Osn/Pr” funded by the Priority 2030 program. Research at the Sechenov First Moscow State Medical University was supported by the Russian Science Foundation, grant no. 20-75-10071.

Author information

Authors and Affiliations

Authors

Contributions

Anton A. Buzdin, Tatiana F. Kovaleva, Nadezhda Y. Katkova—concept and supervision of the work; Nadezhda R. Khilal, Maria V. Suntsova, Dmitry I. Knyazev, Anastasia А. Guryanova, Maxim I. Sorokin—conducting experiments; Maria V. Suntsova, Nadezhda R. Khilal—discussion of the results; Maxim I. Sorokin, Maria V. Suntsova, Nadezhda R. Khilal—writing the text; Anton A. Buzdin—editing the text of the article.

Corresponding author

Correspondence to N. R. Khilal.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: RNAseq, RNA sequencing; DV200, the percentage of RNA fragments with a length greater than 200 bp; CNR, cancer-to-normal ratio; PAL, molecular pathway activation levels; BES, balanced efficiency scores; TCGA, The Cancer Genome Atlas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khilal, N.R., Suntsova, M.V., Knyazev, D.I. et al. Adaptation and Experimental Validation of Clinical RNA Sequencing Protocol Oncobox for MGI DNBSEQ-G50 Platform. Biochem. Moscow Suppl. Ser. B 17, 172–182 (2023). https://doi.org/10.1134/S1990750823600589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750823600589

Keywords:

Navigation