Skip to main content
Log in

G-Quadruplex Structures in Bacteria: Functional Properties and Prospects for Use as Biotargets

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

G-quadruplexes (G4), non-canonical secondary DNA structures, have been intensively investigated for a long time. In eukaryotic organisms, they play an important role in the regulation of gene expression and DNA repair. G4 have also been found in the genomes of numerous bacteria and archaea, but their functional role has not yet been fully explored. Nevertheless, their participation in the formation of antigenic variability, pathogenicity, antibiotic resistance and survival in extreme conditions has been established. Currently, many tools have been developed to detect potential G4 sequences and confirm their formation ability. Since the controlled formation and resolution of the quadruplex is a significant instrument for regulation of the genes critical for survival, a promising direction is the search for ligands—the compounds that can have a stabilizing effect on the quadruplex structure and thereby alter gene expression. Currently, a number of ligands are already known to terminate the growth of pathogenic microorganisms. G4 ligands are of interest as potential antibiotics, which are extremely relevant due to the wide spreading of drug-resistant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Watson, J.D. and Crick, F.H., Cold Spring Harbor Symp. Quant. Biol., 1953, vol. 18, pp. 123–131. https://doi.org/10.1101/sqb.1953.018.01.020

    Article  CAS  PubMed  Google Scholar 

  2. Kaushik, M., Kaushik, S., Roy, K., Singh, A., Mahendru, S., Kumar, M., Chaudhary, S., Ahmed, S., and Kukreti, S., Biochem. Biophys. Rep., 2016, vol. 5, pp. 388–395. https://doi.org/10.1016/j.bbrep.2016.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gellert, M., Lipsett, M.N., and Davies, D.R., Proc. Natl. Acad. Sci. USA, 1962, vol. 48, no. 12, pp. 2013–2018. https://doi.org/10.1073/pnas.48.12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lipps, H.J. and Rhodes, D., Trends Cell Biol., 2009, vol. 19, no. 8, pp. 414–422. https://doi.org/10.1016/j.tcb.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  5. Harkness, R.W. and Mittermaier, A.K., Biochim. Biophys. Acta – Proteins and Proteomics, 2017, vol. 1865, no. 11 Pt B, pp. 1544–1554. https://doi.org/10.1016/j.bbapap.2017.06.012

  6. Qin, Y. and Hurley, L.H., Biochimie, 2008, vol. 90, no. 8, pp. 1149–1171. https://doi.org/10.1016/j.biochi.2008.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, D. and Okamoto, K., Future Med. Chem., 2010, vol. 2, no. 4, pp. 619–646. https://doi.org/10.4155/fmc.09.172

    Article  CAS  PubMed  Google Scholar 

  8. Phan, A.T., Kuryavyi, V., and Patel, D.J., Curr. Opin. Struct. Biol., 2006, vol. 16, no. 3, pp. 288–298. https://doi.org/10.1016/j.sbi.2006.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maizels, N., Nat. Struct. Mol. Biol., 2006, vol. 13, no. 12, pp. 1055–1059. https://doi.org/10.1038/nsmb1171

    Article  CAS  PubMed  Google Scholar 

  10. Morris, M.J., Negishi, Y., Pazsint, C., Schonhoft, J.D., and Basu, S., J. Am. Chem. Soc., 2010, vol. 132, no. 50, pp. 17831–17839. https://doi.org/10.1021/ja106287x

    Article  CAS  PubMed  Google Scholar 

  11. Rouleau, S., Glouzon, J.P.S., Brumwell, A., Bisaillon, M., and Perreault, J.P., RNA, 2017, vol. 23, no. 8, pp. 1172–1179. https://doi.org/10.1261/rna.060962.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Subramanian, M., Rage, F., Tabet, R., Flatter, E., Mandel, J.L., and Moine, H., EMBO Rep., 2011, vol. 12, no. 7, pp. 697–704. https://doi.org/10.1038/embor.2011.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dexheimer, T.S., Sun, D., and Hurley, L.H., J. Am. Chem. Soc., 2006, vol. 128, no. 16, pp. 5404–5415. https://doi.org/10.1021/ja0563861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siddiqui-Jain, A., Grand, C.L., Bearss, D.J., and Hurley, L.H., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 18, pp. 11593–11598. https://doi.org/10.1073/pnas.182256799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernando, H., Reszka, A.P., Huppert, J., Ladame, S., Rankin, S., Venkitaraman, A.R., Neidle, S., and Balasubramanian, S., Biochemistry, 2006, vol. 45, no. 25, pp. 7854–7860. https://doi.org/10.1021/bi0601510

    Article  CAS  PubMed  Google Scholar 

  16. Palumbo, S.L., Memmott, R.M., Uribe, D.J., Krotova-Khan, Y., Hurley, L.H., and Ebbinghaus, S.W., Nucleic Acids Res., 2008, vol. 36, no. 6, pp. 1755–1769. https://doi.org/10.1093/nar/gkm1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, D., Guo, K., Rusche, J.J., and Hurley, L.H., Nucleic Acids Res., 2005, vol. 33, no. 18, pp. 6070–6080. https://doi.org/10.1093/nar/gki917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cogoi, S., Paramasivam, M., Filichev, V., Géci, I., Pedersen, E.B., and Xodo, L.E., J. Med. Chem., 2009, vol. 52, no. 2, pp. 564–568. https://doi.org/10.1021/jm800874t

    Article  CAS  PubMed  Google Scholar 

  19. Agarwal, T., Roy, S., Kumar, S., Chakraborty, T.K., and Maiti, S., Biochemistry, 2014, vol. 53, no. 23, pp. 3711–3718. https://doi.org/10.1021/bi401451q

    Article  CAS  PubMed  Google Scholar 

  20. Rhodes, D. and Lipps, H.J., Nucleic Acids Res., 2015, vol. 43, no. 18, pp. 8627–8637. https://doi.org/10.1093/nar/gkv862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rawal, P., Kummarasetti, V.B.R., Ravindran, J., Kumar, N., Halder, K., Sharma, R., Mukerji, M., Das, S.K., and Chowdhury, S., Genome Res., 2006, vol. 16, no. 5, pp. 644–655. https://doi.org/10.1101/gr.4508806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ravichandran, S., Kim, Y.E., Bansal, V., Ghosh, A., Hur, J., Subramani, V.K., Pradhan, S., Lee, M.K., Kim, K.K., and Ahn, J.H., PLoS Pathogens, 2018, vol. 14, no. 9. https://doi.org/10.1371/journal.ppat.1007334

  23. Mishra, S., Kota, S., Chaudhary, R., and Misra, H.S., Crit. Rev. Biochem. Mol. Biol., 2021, vol. 56, no. 5, pp. 482–499. https://doi.org/10.1080/10409238.2021.1926417

    Article  CAS  PubMed  Google Scholar 

  24. Saranathan, N. and Vivekanandan, P., Trends Microbiol., 2019, vol. 27, no. 2, p. 148. https://doi.org/10.1016/j.tim.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  25. Beaume, N., Pathak, R., Yadav, V.K., Kota, S., Misra, H.S., Gautam, H.K., and Chowdhury, S., Nucleic Acids Res., 2013, vol. 41, no. 1, pp. 76–89. https://doi.org/10.1093/nar/gks1071

    Article  CAS  PubMed  Google Scholar 

  26. Cahoon, L.A. and Seifert, H.S., PLoS Pathogens, 2013, vol. 9, no. 1, p. e1003074. https://doi.org/10.1371/journal.ppat.1003074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andreeva, D.V., Tikhomirov, A.S., and Shchekotikhin, A.E., Russ. Chem. Rev., 2021, vol. 90, no. 1, pp. 1–38. https://doi.org/10.1070/rcr4968

    Article  CAS  Google Scholar 

  28. Santos, T., Salgado, G.F., Cabrita, E.J., and Cruz, C., Pharmaceuticals (Basel, Switzerland), 2021, vol. 14, no. 8, p. 769. https://doi.org/10.3390/ph14080769

    Article  CAS  Google Scholar 

  29. Balasubramanian, S. and Neidle, S., Curr. Opin. Chem. Biol., 2009, vol. 13, no. 3, pp. 345–353. https://doi.org/10.1016/j.cbpa.2009.04.637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruggiero, E. and Richter, S.N., Nucleic Acids Res., 2018, vol. 46, no. 7, pp. 3270–3283. https://doi.org/10.1093/nar/gky187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, B.J., Wu, Y.L., Tanaka, Y., and Zhang, W., Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1084–1096. https://doi.org/10.7150/ijbs.10190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, F., Mulyana, Y., Feterl, M., Warner, J.M., Collins, J.G., and Keene, F.R., Dalton Trans., 2011, vol. 40, no. 18, pp. 5032–5038. https://doi.org/10.1039/c1dt10250h

    Article  CAS  PubMed  Google Scholar 

  33. Selvam, S., Koirala, D., Yu, Z., and Mao, H., J. Am. Chem. Soc., 2014, vol. 136, no. 40, pp. 13967–13970. https://doi.org/10.1021/ja5064394

    Article  CAS  PubMed  Google Scholar 

  34. Huppert, J.L. and Balasubramanian, S., Nucleic Acids Res., 2005, vol. 33, no. 9, pp. 2908–2916. https://doi.org/10.1093/nar/gki609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scaria, V., Hariharan, M., Arora, A., and Maiti, S., Nucleic Acids Res., 2006, vol. 34, suppl. 2, pp. W683–W685. https://doi.org/10.1093/nar/gkl299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kikin, O., d’Antonio, L., and Bagga, P.S., Nucleic Acids Res., 2006, vol. 34, suppl. 2, pp. W676–W682. https://doi.org/10.1093/nar/gkl253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhapola, P. and Chowdhury, S., Nucleic Acids Res., 2016, vol. 44, no. W1, pp. W277–W283. https://doi.org/10.1093/nar/gkw425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varizhuk, A., Ischenko, D., Tsvetkov, V., Novikov, R., Kulemin, N., Kaluzhny, D., Vlasenok, M., Naumov, V., Smirnov, I., and Pozmogova, G., Biochimie, 2017, vol. 135, pp. 54–62. https://doi.org/10.1016/j.biochi.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Hon, J., Martínek, T., Zendulka, J., and Lexa, M., Bioinformatics, 2017, vol. 33, no. 21, pp. 3373–3379. https://doi.org/10.1093/bioinformatics/btx413

    Article  CAS  PubMed  Google Scholar 

  40. Eddy, J. and Maizels, N., Nucleic Acids Res., 2006, vol. 34, no. 14, pp. 3887–3896. https://doi.org/10.1093/nar/gkl529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bedrat, A., Lacroix, L., and Mergny, J.L., Nucleic Acids Res., 2016, vol. 44, no. 4, pp. 1746–1759. https://doi.org/10.1093/nar/gkw006

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beaudoin, J.D., Jodoin, R., and Perreault, J.P., Nucleic Acids Res., 2014, vol. 42, no. 2, pp. 1209–1223. https://doi.org/10.1093/nar/gkt904

    Article  CAS  PubMed  Google Scholar 

  43. Belmonte-Reche, E. and Morales, J.C., NAR: Genomics Bioinf., 2020, vol. 2, no. 1, p. lqz005. https://doi.org/10.1093/nargab/lqz005

    Article  CAS  Google Scholar 

  44. Cebrián, R., Belmonte-Reche, E., Pirota, V., de Jong, A., Morales, J.C., Freccero, M., Doria, F., and Kuipers, O.P., J. Med. Chem., 2021, vol. 65, no. 6, pp. 4752–4766. https://doi.org/10.1021/acs.jmedchem.1c01905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartas, M., Cutová, M., Brázda, V., Kaura, P., Šťastný, J., Kolomazník, J., Coufal, J., Goswami, P., Červeň, J., and Pečinka, P., Molecules, 2019, vol. 24, no. 9, p. 1711. https://doi.org/10.3390/molecules24091711

    Article  CAS  PubMed Central  Google Scholar 

  46. Wu, F., Niu, K., Cui, Y., Li, C., Lyu, M., Ren, Y., Chen, Y., Deng, H., Huang, L., Zheng, S., Liu, L., Wang, J., Song, Q., Xiang, H., and Feng, Q., Commun. Biol., 2021, vol. 4, no. 1, pp. 1–11. https://doi.org/10.1038/s42003-020-01643-4

    Article  CAS  Google Scholar 

  47. Giacani, L., Brandt, S.L., Puray-Chavez, M., Reid, T.B., Godornes, C., Molini, B.J., Benzler, M., Hartig, J.S., Lukehart, S.A., and Centurion-Lara, A., J. Bacteriol., 2012, vol. 194, no. 16, pp. 4208–4225. https://doi.org/10.1128/jb.00863-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, J.U. and Bartel, D.P., Science, 2016, vol. 353, no. 6306, p. aaf5371. https://doi.org/10.1126/science.aaf5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shao, X., Zhang, W., Umar, M.I., Wong, H.Y., Seng, Z., Xie, Y., Zhang, Y., Yang, L., Kwok, C.K., and Deng, X., mBio, 2020, vol. 11, no. 1, pp. e02926–19. https://doi.org/10.1128/mbio.02926-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martínez-Antonio, A. and Collado-Vides, J., Curr. Opin. Microbiol., 2003, vol. 6, no. 5, pp. 482–489. https://doi.org/10.1016/j.mib.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  51. Rui, S. and Tse-Dinh, Y.C., Front. Biosci., 2003, vol. 8, pp. D256–D263. https://doi.org/10.2741/984

    Article  CAS  PubMed  Google Scholar 

  52. Huo, Y.X., Rosenthal, A.Z., and Gralla, J.D., Mol. Microbiol., 2008, vol. 70, no. 2, pp. 369–378. https://doi.org/10.1111/J.1365-2958.2008.06412.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yadav, P., Kim, N., Kumari, M., Verma, S., Sharma, T.K., Yadav, V., and Kumar, A., J. Bacteriol., 2021, vol. 203, no. 13, p. e0057720. https://doi.org/10.1128/jb.00577-20

    Article  CAS  PubMed  Google Scholar 

  54. Kumari, N., Vartak, S.V., Dahal, S., Kumari, S., Desai, S.S., Gopalakrishnan, V., Choudhary, B., and Raghavan, S.C., iScience, 2019, vol. 21, pp. 288–307. https://doi.org/10.1016/j.isci.2019.10.033

  55. Lim, S., Yoon, H., Ryu, S., Jung, J., Lee, M., and Kim, D., Radiation Res., 2006, vol. 165, no. 4, pp. 430–437. https://doi.org/10.1667/rr3507.1

    Article  CAS  PubMed  Google Scholar 

  56. Ghosal, D., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H.M., Brim, H., Makarova, K.S., Wackett, L.P., Fredrickson, J.K., and Daly, M.J., FEMS Microbiol. Rev., 2005, vol. 29, no. 2, pp. 361–375. https://doi.org/10.1016/j.femsre.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  57. Al-Najjar, M.A.A. and Albokari, M.M., Annals Microbiology, 2019, vol. 69, no. 13, pp. 1567–1577. https://doi.org/10.1007/s13213-019-01541-z

    Article  CAS  Google Scholar 

  58. Mishra, S.K., Shankar, U., Jain, N., Sikri, K., Tyagi, J.S., Sharma, T.K., Mergny, J.L., and Kumar, A., Molecular Therapy Nucleic Acids, 2019, vol. 16, pp. 698–706. https://doi.org/10.1016/j.omtn.2019.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Agapov, A.A. and Kulbachinskiy, A.V., Biochemistry (Moscow), 2015, vol. 80, no. 10, pp. 1201–1216. https://doi.org/10.1134/s0006297915100016

    Article  CAS  Google Scholar 

  60. Cahoon, L.A. and Seifert, H.S., Science, 2009, vol. 325, no. 5941, pp. 764–767. https://doi.org/10.1126/science.1175653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Norris, S.J., Microbiol. Spectrum, 2014, vol. 2, no. 6. https://doi.org/10.1128/microbiolspec.mdna3-0038-2014

  62. Centurion-Lara, A., LaFond, R.E., Hevner, K., Godornes, C., Molini, B.J., van Voorhis, W.C., and Lukehart, S.A., Mol. Microbiol., 2004, vol. 52, no. 6, pp. 1579–1596. https://doi.org/10.1111/j.1365-2958.2004.04086.x

    Article  CAS  PubMed  Google Scholar 

  63. Jain, N., Mishra, S.K., Shankar, U., Jaiswal, A., Sharma, T.K., Kodgire, P., and Kumar, A., Genomics, 2020, vol. 112, no. 6, p. 4863. https://doi.org/10.1016/j.ygeno.2020.09.010

    Article  CAS  PubMed  Google Scholar 

  64. Mishra, S.K., Jain, N., Shankar, U., Tawani, A., Sharma, T.K., and Kumar, A., Sci. Rep., 2019, vol. 9, no. 1, p. 1791. https://doi.org/10.1038/s41598-018-38400-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shankar, U., Jain, N., Mishra, S.K., Sharma, T.K., and Kumar, A., Front. Microbiol., 2020, vol. 11, p. 1269. https://doi.org/10.3389/fmicb.2020.01269/full

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gates, A.J., Luque-Almagro, V.M., Goddard, A.D., Ferguson, S.J., Roldán, M.D., and Richardson, D.J., Biochem. J., 2011, vol. 435, no. 3, pp. 743–753. https://doi.org/10.1042/bj20101920

    Article  CAS  PubMed  Google Scholar 

  67. Yadav, P., Harcy, V., Argueso, J.L., Dominska, M., Jinks-Robertson, S., and Kim, N., PLoS Genetics, 2014, vol. 10, no. 12, p. e1004839. https://doi.org/10.1371/journal.pgen.1004839

    Article  PubMed  PubMed Central  Google Scholar 

  68. Arimondo, P.B., Riou, J.F., Mergny, J.L., Tazi, J., Sun, J.S., Garestier, T., and Hélène, C., Nucleic Acids Res., 2000, vol. 28, no. 24, pp. 4832–4838. https://doi.org/10.1093/nar/28.24.4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gray, L.T., Vallur, A.C., Eddy, J., and Maizels, N., Nature Chem. Biol., 2014, vol. 10, no. 4, pp. 313–318. https://doi.org/10.1038/nchembio.1475

    Article  CAS  Google Scholar 

  70. Maizels, N. and Gray, L.T., PLoS Genetics, 2013, vol. 9, no. 4, p. e1003468. https://doi.org/10.1371/journal.pgen.1003468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Estep, K.N., Butler, T.J., Ding, J., and Brosh, R.M., Curr. Med. Chem., 2017, vol. 26, no. 16, pp. 2881–2897. https://doi.org/10.2174/0929867324666171116123345

    Article  CAS  Google Scholar 

  72. Cheung, I., Schertzer, M., Rose, A., and Lans-dorp, P.M., Nat. Genet., 2002, vol. 31, no. 4, pp. 405–409. https://doi.org/10.1038/ng928

    Article  CAS  PubMed  Google Scholar 

  73. Kota, S. and Misra, H.S., J. Biosci., 2015, vol. 40, no. 5, pp. 833–843. https://doi.org/10.1007/s12038-015-9571-z

    Article  CAS  PubMed  Google Scholar 

  74. Wu, X. and Maizels, N., Nucleic Acids Res., 2001, vol. 29, no. 8, pp. 1765–1771. https://doi.org/10.1093/nar/29.8.1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shukla, K., Thakur, R.S., Ganguli, D., Rao, D.N., and Nagaraju, G., Biochem. J., 2017, vol. 474, no. 21, pp. 3579–3597. https://doi.org/10.1042/bcj20170587

    Article  CAS  PubMed  Google Scholar 

  76. Paul, T., Voter, A.F., Cueny, R.R., Gavrilov, M., Ha, T., Keck, J.L., and Myong, S., Nucleic Acids Res., 2020, vol. 48, no. 12, pp. 6640–6653. https://doi.org/10.1093/nar/gkaa442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saha, T., Shukla, K., Thakur, R.S., Desingu, A., and Nagaraju, G., FEBS J., 2019, vol. 286, no. 11, pp. 2062–2086. https://doi.org/10.1111/febs.14798

    Article  CAS  PubMed  Google Scholar 

  78. Thakur, R.S., Desingu, A., Basavaraju, S., Subrama-nya, S., Rao, D.N., and Nagaraju, G., J. Biol. Chem., 2014, vol. 289, no. 36, pp. 25112–25136. https://doi.org/10.1074/jbc.m114.563569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Waller, Z.A.E., Pinchbeck, B.J., Buguth, B.S., Mea-dows, T.G., Richardson, D.J., and Gates, A.J., Chem. Commun., 2016, vol. 52, no. 92, p. 13511. https://doi.org/10.1039/c6cc06057a

    Article  CAS  Google Scholar 

  80. Perrone, R., Lavezzo, E., Riello, E., Manganelli, R., Palù, G., Toppo, S., Provvedi, R., and Richter, S.N., Sci. Rep., 2017, vol. 7, no. 1, p. 5743. https://doi.org/10.1038/s41598-017-05867-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shankar, U., Jain, N., Majee, P., Kodgire, P., Sharma, T.K., and Kumar, A., Front. Genetics, 2020, vol. 11, p. 935. https://doi.org/10.3389/fgene.2020.00935

    Article  CAS  Google Scholar 

  82. Shitikov, E., Bespiatykh, D., Malakhova, M., Bespyatykh, J., Bodoev, I., Vedekhina, T., Zaychikova, M., Veselovsky, V., Klimina, K., Ilina, E., and Varizhuk, A., Front. Microbiol., 2022, vol. 13, p. 817024. https://doi.org/10.3389/fmicb.2022.817024

    Article  PubMed  PubMed Central  Google Scholar 

  83. Robinson, J., Raguseo, F., Nuccio, S.P., Liano, D., and di Antonio, M., Nucleic Acids Res., 2021, vol. 49, no. 15, pp. 8419–8431. https://doi.org/10.1093/nar/gkab609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 19-75-10109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Shitikov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shitikov, E.A., Bespiatykh, D.A., Bodoev, I.N. et al. G-Quadruplex Structures in Bacteria: Functional Properties and Prospects for Use as Biotargets. Biochem. Moscow Suppl. Ser. B 16, 292–304 (2022). https://doi.org/10.1134/S1990750822040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750822040084

Keywords:

Navigation