Skip to main content
Log in

Changes in the Mitochondrial Subproteome of Mouse Brain Rpn13-Binding Proteins Induced by the Neurotoxin MPTP and the Neuroprotector Isatin

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction and ubiquitin-proteasome system (UPS) failure contribute significantly to the development of Parkinson’s disease (PD). The proteasome subunit Rpn13 located on the regulatory (19S) subparticle plays an important role in the delivery of proteins, subjected to degradation, to the proteolytic (20S) part of proteasome. We have previously found several brain mitochondrial proteins specifically bound to Rpn13 (Buneeva et al., Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, (2020), vol. 14, pp. 297−305). In this study we have investigated the effect of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the neuroprotector isatin on the mitochondrial subproteome of Rpn13-binding proteins of the mouse brain. Administration of MPTP (30 mg/kg) to animals caused movement disorders typical of PD, while pretreatment with isatin (100 mg/kg, 30 min before MPTP) reduced their severity. At the same time, the injection of MPTP, isatin, or their combination (isatin + MPTP) had a significant impact on the total number and the composition of Rpn13-binding proteins. The injection of MPTP decreased the total number of Rpn13-binding proteins in comparison with control, and the injection of isatin prior to MPTP or without MPTP caused an essential increase in the number of Rpn13-binding proteins, mainly of the functional group of proteins participating in the protein metabolism regulation, gene expression, and cell division and differentiation. Selected biosensor validation confirmed the interaction of the proteasome Rpn13 subunit with some proteins (glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, histones H2A and H2B) recognized during proteomic profiling. The results obtained suggest that under the conditions of experimental MPTP-induced parkinsonism the neuroprotective effect of isatin may be aimed at the interaction of mitochondria with the components of UPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Cookson, M.R., Ann. Rev. Biochem., 2005, vol. 74, pp. 9–52.

    Article  Google Scholar 

  2. Breydo, L., Wu, J.W., and Uversky, V.N., Biochim. Biophys. Acta, 2012, vol. 1822, no. 2, pp. 261–285. https://doi.org/10.1016/j.bbadis.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  3. Uversky, V.N., Front. Biosci. (Landmark Ed.), 2009, vol. 14, pp. 5188–5238. https://doi.org/10.2741/3594

  4. Mehra, S., Sahay, S., and Maji, S.K., Biochim. Biophys. Acta Proteins Proteom., 2019, vol. 1867, no. 10, pp. 890–908. https://doi.org/10.1016/j.bbapap.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Moore, D.J., West, A.B., Dawson, V.L., and Dawson, T.M., Annu. Rev. Neurosci., 2005, vol. 28, pp. 57–87.

    Article  CAS  Google Scholar 

  6. Branco, D.M., Arduino, D.M., Esteves, A.R., Silva, D.F.F., Cardoso, S.M., and Oliveira, C.R., Front. Aging Neurosci., 2010, vol. 2, pp. 1–10. https://doi.org/10.3389/fnagi.2010.00017

    Article  CAS  Google Scholar 

  7. Buneeva, O.A. and Medvedev, A.E., Biomeditsinskaya Khimiya, 2011, vol. 57, no. 3, pp. 246–281.

    Article  CAS  Google Scholar 

  8. Schwartz, A.L. and Ciechanover, A., Annu. Rev. Pharmacol. Toxicol., 2009, vol. 49, pp. 73–96.

    Article  CAS  Google Scholar 

  9. Goldberg, A.L., Nature, 2003, vol. 426, pp. 895–899.

    Article  CAS  Google Scholar 

  10. Finley, D., Chen, X., and Walters, K.J., Trends Biochem. Sci., 2016, vol. 41, pp. 77–93.

    Article  CAS  Google Scholar 

  11. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M., J. Biol. Chem., 1994, vol. 269, pp. 7059–7061.

    Article  CAS  Google Scholar 

  12. Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., Walters, K., Finley, D., and Dikic, I., Nature, 2008, vol. 453, no. 7194, pp. 481–488.

    Article  CAS  Google Scholar 

  13. Shi, Y., Chen, X., Elsasser, S., Stocks, B.B., Tian, G., Lee, B.-H., Shi, Y., Zhang, N., de Poot, S.A.H., Tuebing, F., Sun, S., Vannoy, J., Tarasov, S.G., Engen, J.R., Finley, D., and Walters, K.J., Science, 2016, vol. 351, 6275, pii: aad9421. https://doi.org/10.1126/science.aad9421

    Article  CAS  PubMed  Google Scholar 

  14. Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S., Mol. Cel. Biology, 2007, vol. 27, no. 19, pp. 6629–6638. https://doi.org/10.1128/MCB.00509-07

    Article  CAS  Google Scholar 

  15. Hamazaki, J., Hirayama, S., and Murata, S., PLoS Genet., 2015, vol. 11, e1005401. https://doi.org/10.1371/journal.pgen.1005401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez-Fonts, K., Davis, C., Tomita, T., Elsasser, S., Nager, A.R., Shi, Y., Finley, D., and Matouschek, A., Nat. Commun., 2020, vol. 11, 477. https://doi.org/10.1038/s41467-019-13906-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buneeva, O.A., Kopylov, A.T., and Medvedev, A.E., Biomeditsinskaya Khimiya, 2020, vol. 66, no. 2, pp. 138–144.

    Article  CAS  Google Scholar 

  18. Buneeva, O.A., Gnedenko, O.V., Kopylov, A.T., Medvedeva, M.V., Zgoda, V.G., Ivanov, A.S., and Medvedev, A.E., Biochemistry (Moscow), 2017, vol. 82, no. 9, pp. 1042–1047.

    CAS  PubMed  Google Scholar 

  19. Medvedev, A.E., Buneeva, O.A., Kopylov, A.T., Tikhonova, O.V., Medvedeva, M.V., Nerobkova, L.N., Kapitsa, I.G., and Zgoda, V.G., Biochemistry (Moscow), 2017, vol. 82, no. 3, pp. 470–480.

    Google Scholar 

  20. Tillerson, J.L. and Miller, G.W., J. Neurosci. Methods, 2003, vol. 123, no. 2, pp. 189–200.

    Article  Google Scholar 

  21. Ogawa, N., Hirose, Y., Ohara, S., Ono, T., and Watanabe, Y., Res. Commun. Chem. Pathol. Pharmacol., 1985, vol. 50, no. 3, pp. 435–441.

    CAS  PubMed  Google Scholar 

  22. Voronina, T.A., Val’dman, E.A., Kapitsa, I.G., and Narobkova, L.N., in Rukovodstvo po provedeniyu doklinicheskikh issledovanyi lekarstvennykh sredstv (Textbook for Preclinical Trials of Drugs), Grif and Co, Moscow, 2021, pp. 219–234.

  23. Deacon, R.M., J. Vis. Exp., 2013, vol. 75, e2609. https://doi.org/10.3791/2609

    Article  Google Scholar 

  24. Prut, L. and Belzung, C., Eur. J. Pharmacol., 2003, vol. 463, pp. 3–33.

    Article  CAS  Google Scholar 

  25. Buneeva, O., Kopylov, A., Kapitsa, I., Ivanova, E., Zgoda, V., and Medvedev, A., Cells, 2018, vol. 7, 91. https://doi.org/10.3390/cells7080091

    Article  CAS  PubMed Central  Google Scholar 

  26. Scopes, R.K. and Stoter, A., Methods Enzymol., 1982, vol. 90, pt. E, pp. 479–490.

  27. Walker, J.M., Ed., Humana Press Inc., Totowa, N.Y., 2002.

  28. Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M., Nature Methods, 2009, vol. 6, no. 5, pp. 359–362.

    Article  CAS  Google Scholar 

  29. Ayala, A., Venero, J.L., Cano, J., and Machado, A., Front. Biosci., 2007, vol. 12, pp. 986–1007.

    Article  CAS  Google Scholar 

  30. Cannon, J.R., and Greenamyre, J.T., Progr. Brain Res., 2010, vol. 184, pp. 17–33. https://doi.org/10.1016/s0079-6123(10)84002-6

    Article  CAS  Google Scholar 

  31. Medvedev, A.E., Clow, A., Sandler, M., and Glover, V., Biochem. Pharmacol., 1996, vol. 52, pp. 385–391.

    Article  CAS  Google Scholar 

  32. Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M. Diao, L., Williams, A.M., Nie, E.H., Makani, S., Tian, N., Castillo, P.E., Buchman, V.L., and Chandra, S.S., PNAS, 2010, vol. 107, pp. 19573–19578.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mass spectrometry analysis of proteins and SPR analysis of intermolecular interactions was performed using equipment and resources of the Center for Collective Use “Human Proteome” at the Institute of Biomedical Chemistry.

Funding

The work done in the framework of the Russian Federation fundamental research program for the long-term period for 2021−2030 (mass spectrometry analysis) was partially supported by the Russian Foundation for Basic Research (project no. 19-015-00073a) (the study of the locomotor activity of animals under the influence of the neurotoxin MPTP and the neuroprotector isatin and the isolation and sample preparation of Rpn-binding proteins of the brain mitochondria, biosensor analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Buneeva.

Ethics declarations

The authors declare that they have no conflicts of interest. The experimental modeling of Parkinson’s disease and the study of changes in the locomotor activity of mice induced by the neurotoxin MPTP and the neuroprotector isatin were carried out in compliance with the generally accepted norms of the humane care of laboratory animals.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buneeva, O.A., Kopylov, A.T., Gnedenko, O.V. et al. Changes in the Mitochondrial Subproteome of Mouse Brain Rpn13-Binding Proteins Induced by the Neurotoxin MPTP and the Neuroprotector Isatin. Biochem. Moscow Suppl. Ser. B 15, 199–214 (2021). https://doi.org/10.1134/S1990750821030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821030021

Keywords

Navigation