Skip to main content
Log in

The Effect of Cryoprotective Agents on Proteins of the Erythrocyte Membrane-Cytoskeleton Complex

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The aim of the study was to assess the effects of glycerol and DMSO, belonging to the endocellular type of cryoprotective agents (CPAs), as well as polyethylene glycol, dextran, sucrose, and mannitol, related to exocellular CPAs, on proteins of the membrane-cytoskeleton complex (MCC) of human erythrocytes at the stage preceding freezing. Protein modifications were evaluated by SDS-PAGE using different approaches of sample preparation for analysis. The use of β-mercaptoethanol in the solubilizing buffer showed no changes in the MCC polypeptide profile of erythrocytes preincubated with CPAs thus suggesting good biocompatibility of the examined substances. The use of the cross-linking reagent diamide for assessment of protein modifications did not reveal structural abnormalities that would cause significant changes in the localization of −SH groups and an increase in the production of high-molecular-weight polypeptide complexes identified by SDS-PAGE without β-mercaptoethanol. However, the changes found in the electrophoretic mobility of band 5 proteins in erythrocytes incubated with CPAs in the diamide presence attest a reorganization of the structural state of actin protofilaments, which can be caused by alterations of actin monomers themselves or initiated by modifications of actin-binding proteins in the presence of CPAs. In addition, an increase in the amount of the protein fraction located between bands 5 and 6 in the MCC profiles of erythrocytes incubated with CPAs and diamide was found. Despite the similarity of the reaction of erythrocyte proteins to different CPAs, the properties of cells depending on MCC may differ due to modifications in the macromolecule structures, which are not associated with changes in the localization of −SH-groups of proteins. The results obtained indicate that unspecified rearrangements can occur in the erythrocyte MCC under CPA effects that requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Scott, K.L., Lecak, J., and Acker, J.P., Transfus. Med. Rev., 2005, vol. 19, pp. 127–142. https://doi.org/10.1016/j.tmrv.2004.11.004

    Article  PubMed  Google Scholar 

  2. Zemlianskykh, N.G. and Babijchuk, L.A., Biologicheskye Membrany, 2019, vol. 36, no. 2, pp. 125–136. https://doi.org/10.1134/S0233475519010055

    Article  CAS  Google Scholar 

  3. Zemlianskykh, N.G. and Denisova, O.N., Biophysics, 2009, vol. 54, no. 4, pp. 490–496. https://doi.org/10.1134/S0006350909040162

    Article  Google Scholar 

  4. Falco, O.V., Zemlianskykh, N.G., Lipina, O.V., and Prokopyuk, O.S., Biomeditsinskaya Khimiya, 2013, vol. 59, no. 2, pp. 219–234. https://doi.org/10.18097/pbmc20135902219

    Article  Google Scholar 

  5. Ragoonanan, V., Less, R., and Aksan, A., Cryobiology, 2013, vol. 66, no. 2, pp. 96–104. https://doi.org/10.1016/j.cryobiol.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  6. Zemlianskykh, N.G., Tsitologiya i Genetika, 2016, vol. 50, no. 3, pp. 66–79. https://doi.org/10.3103/S0095452716030117

    Article  CAS  Google Scholar 

  7. Chiou, S. and Vesely, D.L., Life Sci., 1995, vol. 57, no. 10, pp. 945–955. https://doi.org/10.1016/0024-3205(95)02029-i

    Article  CAS  PubMed  Google Scholar 

  8. Fairbanks, G., Steck, T.L., and Wallach, D.F., Biochemistry, 1971, vol. 10, pp. 2606–2617. https://doi.org/10.1021/bi00789a030

    Article  CAS  PubMed  Google Scholar 

  9. Lux, 4th, S.E., Blood, 2016, vol. 127, pp. 187–199. https://doi.org/10.1182/blood-2014-12-512772

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, S., Punjabi, V., Zingde, S.M., and Gokhale, S.M., J. Membr. Biol., 2014, vol. 247, no. 11, pp. 1181–1189. https://doi.org/10.1007/s00232-014-9718-0

    Article  CAS  PubMed  Google Scholar 

  11. Fedorova, M, Kuleva, N, and Hoffmann, R., J. Proteome Res., 2010, vol. 9, pp. 1598–1609. https://doi.org/10.1021/pr901099e

    Article  CAS  PubMed  Google Scholar 

  12. Pajot-Augy, E. and Axelos, M.A.V., Eur. Biophys. J., 1992, vol. 21, pp. 179–184. https://doi.org/10.1007/BF00196761

    Article  CAS  PubMed  Google Scholar 

  13. Macías García, B., Ortega Ferrusola, C., Aparicio, I.M., Miró-Morán, A., Morillo Rodriguez, A., Gallardo Bolaños, J.M., González Fernández, L., Balao da Silva, C.M., Rodríguez Martínez, H., Tapia, J.A., and Peña, F.J., Theriogenology, 2012, vol. 77, no. 7, pp. 1280–1289. https://doi.org/10.1016/j.theriogenology.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  14. Pasini, E.M., Kirkegaard, M., Mortensen, P., Lutz, H.U., Thomas, A.W., and Mann, M., Blood, 2006, vol. 108, pp. 791–801. https://doi.org/10.1182/blood-2005-11-007799

    Article  CAS  PubMed  Google Scholar 

  15. Zemlianskykh, N.G., Biophysics, 2018, vol. 63, no. 1, pp. 66–76. https://doi.org/10.1134/S0006350918010219

    Article  CAS  Google Scholar 

  16. Timasheff, S.N., Annu. Rev. Biophys. Biomol. Struct., 1993, vol. 22, pp. 67–97. https://doi.org/10.1146/annurev.bb.22.060193.000435

    Article  CAS  PubMed  Google Scholar 

  17. Knowles, D.B., Shkel, I.A., Phan, N.M., Sternke, M., Lingeman, E., Cheng, X., Cheng, L., O’Connor, K., and Record, M.T., Biochemistry, 2015, vol. 54, pp. 3528–3542. https://doi.org/10.1021/acs.biochem.5b00246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cleland, J.L., Hedgepeth, C., and Wang, D.I., J. Biol. Chem., 1992, vol. 267, pp. 13327–13334. PMID:1618834.

    Article  CAS  Google Scholar 

  19. Schellman, J.A., Biophys. J., 2003, vol. 85, no. 1, pp. 108–125. https://doi.org/10.1016/S0006-3495(03)74459-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosin, C., Schummel, P.H., and Winter, R., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 13, pp. 8330–8337. https://doi.org/10.1039/c4cp04431b

    Article  CAS  PubMed  Google Scholar 

  21. Kofanova, O.A., Zemlyanskikh, N.G., Ivanova, L., and Bernhardt, I., Bioelectrochemistry, 2008, vol. 73, pp. 151–154. https://doi.org/10.1016/j.bioelechem.2008.04.025

    Article  CAS  PubMed  Google Scholar 

  22. Kucherenko, Y.V. and Bernhardt, I., Ukr. Biokhim. Zh., 2006, vol. 78, no. 6, pp. 46–52. PMID:18959037.

    CAS  Google Scholar 

Download references

Funding

The work was performed within the framework of budgetary funding of the research work no. 2.2.6.90 (State Registration no. 0114U0011320) of the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Zemlianskykh.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed on human blood corresponded to the Ethical Standards of the Institutional and National Research Ethics Committee, as well as the 1964 Declaration of Helsinki and its subsequent amendments.

CONFLICT OF INTERESTS

The author declares no conflicts of interest.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemlianskykh, N.G. The Effect of Cryoprotective Agents on Proteins of the Erythrocyte Membrane-Cytoskeleton Complex. Biochem. Moscow Suppl. Ser. B 15, 132–138 (2021). https://doi.org/10.1134/S1990750821020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821020128

Keywords:

Navigation