Skip to main content
Log in

Molecular Mechanisms of the Cardiotoxic Action of Anthracycline Antibiotics and Statin-Induced Cytoprotective Reactions of Cardiomyocytes

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Cardiotoxicity, a well-recognized side effect of anthracycline antibiotics limits their use in the treatment of malignant processes in some patients. The review considers the main causes of the cardiomyocyte susceptibility to the damaging effect of anthracyclines, primarily associated with increased free radical processes. Currently, research is widely carried out to find ways to reduce anthracycline cardiotoxicity, in particular, the use of cardioprotective agents in the complex treatment of tumors. Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve the function and metabolism of the cardiovascular system under various pathological conditions, therefore, it is proposed to use statins to reduce cardiotoxic complications of chemotherapy. Statins exhibit direct (hypolipidemic) and pleiotropic effects determined by inhibition of mevalonic acid synthesis and downstream biochemical cascades mediating their cardioprotective properties. The main point of intersection of the pharmacological activity of anthracyclines and statins is their ability to regulate the functioning of small GTPases of the Rho family: anthracyclines and statins cause opposite effects on the Rho proteins. The effect of statins on the modification and membrane dislocation of Rho proteins mediates their indirect antioxidant, anti-inflammatory, endothelioprotective, and antiapoptotic effects. Special attention in the review is paid to the mechanism of statin inhibition of the doxorubicin blockade of the DNA-topoisomerase complex, which may be important for prevention of the cardiotoxic damage during chemotherapy. At the same time, it should be noted that the use of statins can be accompanied by adverse side effects: provocation of increased insulin resistance and glucose tolerance, which often becomes the reason for their elimination from therapeutic schemes in patients with disorders of carbohydrate metabolism, so further research in this direction is clearly needed. Analysis of data on the antitumor effect of statins, their ability to sensitize the tumor to treatment with cytostatics showed that the relationship between anthracycline antibiotics and statins is characterized not only by antagonism, but also in some cases by synergism. Despite some adverse effects, statins are among the most promising cardio- and vasoprotectors for the use in anthracycline cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zamorano, J.L., Lancellotti, P., Muñoz, D.R., Aboyans, V., Asteggiano, R., Galderisi, M., Habib, G., Le-nihan, D.J., Lip, G.Y.H., Lyon, A.R., Fernandez, T.L., Mohty, D., Piepoli, M.F., Tamargo, J., Torbicki, A., and Suter, T.M., Russian Journal of Cardiology, 2017, vol. 143, no. 3, pp. 105–139. https://doi.org/10.15829/1560-4071-2017-3-105-139

    Article  Google Scholar 

  2. Gendlin, G.E., Emelina, E.I., Nikitin, I.G., and Vasyuk, Yu.A., Russian Journal of Cardiology, 2017, vol. 143, no. 3, pp. 145–154.

    Google Scholar 

  3. Klinnikova, M.G., Lushnikova, E.L., Koldy-sheva, E.V., Tolstikova, T.G., Sorokina, I.V., Yuzhik, E.I., and Mzhelskaya, M.M., Bulletin of Experimental Biology and Medicine, 2016, vol. 162, no. 8, pp. 247–252.

    Article  Google Scholar 

  4. Lushnikova, E.L., Klinnikova, M.G., Molodykh, O.P., and Nepomnyashchikh, L.M., Bulletin of Experimental Biology and Medicine, 2005, vol. 139, no. 4, pp. 470–475.

    Article  Google Scholar 

  5. Nepomnyashchikh, L.M., Lushnikova, E.L., Klinnikova, M.G., and Molodykh, O.P., Siberian Journal of Oncology, 2011, vol. 46, no. 4, pp. 30–35.

    Google Scholar 

  6. Vejpongsa, P. and Yeh, E.T.H., Clin. Pharmacol. Ther., 2014, vol. 95, no. 1, pp. 45–52. https://doi.org/10.1038/clpt.2013.201

  7. Tacar, O. and Dass, C.R., J. Pharmacy Pharmacol., 2013, vol. 65, no. 11, pp. 1577–1589. https://doi.org/10.1111/jphp.12144

    Article  CAS  Google Scholar 

  8. Roos, W.P. and Kaina, B., Cancer Letts., 2013, vol. 332, pp. 237–248. https://doi.org/10.1016/j.canlet.2012.01.007

    Article  CAS  Google Scholar 

  9. Roos, W.P., Thomas, A.D., and Kaina, B., Nature Reviews Cancer, 2016, vol. 16, pp. 20–33. https://doi.org/10.1038/nrc.2015.2

    Article  CAS  PubMed  Google Scholar 

  10. Octavia, Y., Tocchetti, C.G., Gabrielson, K.L., Janssens, S., Crijns, H.J., and Moens, A.L., J. Mol. Cell. Cardiol., 2012, vol. 52, pp. 1213–1225. https://doi.org/10.1016/j.yjmcc.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  11. Li, J.-Z., Yu, S.-Y., Wu, J.-H., Shao, Q.-R., and Dong, X.-M., Can. J. Physiol. Pharmacol., 2012, vol. 90, no. 12, pp. 1569–1575. https://doi.org/10.1139/y2012-140

    Article  CAS  PubMed  Google Scholar 

  12. Oesterle, A., Laufs, U., and Liao, J.K., Circulation Res., 2017, vol. 120, no. 1, pp. 229–243. https://doi.org/10.1161/circresaha.116.308537

    Article  CAS  PubMed  Google Scholar 

  13. Carrizzo, A., Forte, M., Lembo, M., Formisano, L., Puca, A.A., and Vecchione, C., Current Drug Targets, 2014, vol. 15, no. 13, pp. 1231–1246. https://doi.org/10.2174/1389450115666141027110156

    Article  CAS  PubMed  Google Scholar 

  14. Hajas, G., Bacsi, A., Aguilera-Aguirre, L., Hegde, M.L., Tapas, K.H., Sur, S., Radak, Z., Ba, X., and Boldogh, I., Free Rad. Biol. Med., 2013, vol. 61, pp. 384–394. https://doi.org/10.1016/j.freeradbiomed.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  15. Marei, H. and Malliri, A., Small GTPases, 2017, vol. 8, no. 2, pp. 90–99. https://doi.org/10.1080/21541248.2016.1202635

    Article  CAS  PubMed  Google Scholar 

  16. Huelsenbeck, S.C., Schorr, A., Roos, W.P., Huelsenbeck, J., Henninger, C., Kaina, B., and Fritz, G., J. B-iol. Chem., 2012, vol. 287, pp. 38590–38599. https://doi.org/10.1074/jbc.m112.377903

    Article  CAS  Google Scholar 

  17. Fritz, G. and Henninger, C., Biomolecules, 2015, vol. 5, pp. 2417–2434. https://doi.org/10.3390/biom5042417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henninger, C. and Fritz, G., Cell Death and Disease, 2017, vol. 8, e2564. https://doi.org/10.1038/cddis.2016.418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nadeev, A.D. and Goncharov, N.V., Complex Problems of Cardiovascular Diseases, 2014, vol. 4, pp. 80–94.

    Google Scholar 

  20. Wang, L., Chen, Q., Qi, H., Wang, C., Wang, C., Zhang, J., and Dong, L., Cancer Res., 2016, vol. 76, no. 22, pp. 6631–6642. https://doi.org/10.1158/0008-5472.CAN-15-3034

    Article  CAS  PubMed  Google Scholar 

  21. Riad, A., Bien, S., Gratz, M., Escher, F., Wester-mann, D., Heimesaat, M.M., Bereswill, S., Krieg, T., Felix, S.B., Schultheiss, H.P., Kroemer, H.K., and Tschöpe, C., Eur. J. Heart Failure, 2008, vol. 10, no. 3, pp. 233–243. https://doi.org/10.1016/j.ejheart.2008.01.004

    Article  CAS  Google Scholar 

  22. Vranková, S., Barta, A., Klimentová, J., Dovinová, I., Líšková, S., Dobešová, Z., Pecháňová, O., Kuneš, J., and Zicha J., Oxidative Medicine and Cellular Longevity, 2016, vol. 2016, article ID 9814038. https://doi.org/10.1155/2016/9814038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wardyn, J.D., Ponsford, A.H., and Sanderson, C.M., Biochem. Soc. Trans., 2015, vol. 43, no. 4, pp. 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bellezza, I., Giambanco, I., Minelli, A., and Donato, R., Biochimica et Biophysica Acta (BBA)Molecular Cell Research, 2018, vol. 1865, no. 5, pp. 721–733.

    CAS  PubMed  Google Scholar 

  25. Volkova, M. and Russell, R., Curr. Cardiol. Revs., 2011, vol. 7, no. 4, pp. 214–220. https://doi.org/10.2174/157340311799960645

    Article  CAS  Google Scholar 

  26. Conklin, K.A., J. Nutrition, 2014, vol. 134, no. 11, 3201S–3204S. https://doi.org/10.1093/jn/134.11.3201s

    Article  Google Scholar 

  27. Pozhilova, Y.V., Novikov, V.E., and Levchenkova, O.S., Reviews on Clinical Pharmacology and Drug Therapy, 2014, vol. 12, no. 3, pp. 13–19. https://doi.org/10.17816/RCF12313-19

    Article  Google Scholar 

  28. Angsutararux, P., Luanpitpong, S., and Issaragrisil, S., Oxidative Medicine and Cellular Longevity, 2015, vol. 2015, article ID 795602. https://doi.org/10.1155/2015/795602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mong, M.-C., Hsia, T.-C., and Yin, M.-C., J. Food Sci., 2013, vol. 78, no. 10, pp. H1621–H1628. https://doi.org/10.1111/1750-3841.12257

    Article  CAS  PubMed  Google Scholar 

  30. Valeev V.V., Trashkov A.P., Kovalenko A.L., Petrov A.Y., Vasiliev A.G., Patol. Fiziol. Ekspr. Ter., 2016, vol. 60, no. 4, pp. 52–57. https://doi.org/10.25557/0031-2991.2016.04.52-57

    Article  CAS  Google Scholar 

  31. Vershinina, E.O., Salnikova, E.S., and Repin, A.N., Siberian Medical Journal, 2014, vol. 29, no. 4, pp. 6–12. https://doi.org/10.29001/2073-8552-2014-29-4-6-12

    Article  Google Scholar 

  32. Gogolashvili, N.G., Russian Journal of Cardiology, 2018, vol. 154, no. 2, pp. 134–149. https://doi.org/10.15829/1560-4071-2018-2-134-149

    Article  Google Scholar 

  33. Lee, M.M.Y., Sattar, N., McMurray, J.J.V., and Packard, C.J., Current Atherosclerosis Reports, 2019, vol. 21, no. 41, 8 pages. https://doi.org/10.1007/s11883-019-0800-z

  34. Riad, A., Bien, S., Westermann, D., Becher, P.M., Loya, K., Landmesser, U., Kroemer, H.K., Schultheiss, H.P., and Tschöpe, C., Cancer Res., 2009, vol. 69, pp. 695–699. https://doi.org/10.1158/0008-5472.can-08-3076

    Article  CAS  PubMed  Google Scholar 

  35. Huelsenbeck, J., Henninger, C., Schad, A., Lackner, K.J., Kaina, B., and Fritz, G., Cell Death and Disease, 2011, vol. 2, e190. https://doi.org/10.1038/cddis.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Acar, Z., Kale, A., Turgut, M., Demircan, S., Durna, K., Demir, S., Meriç, M., and Ağaç, M.T., J. Am. College Cardiol., 2011, vol. 58, pp. 988–989. https://doi.org/10.1016/j.jacc.2011.05.025

    Article  Google Scholar 

  37. Kim, Y.H., Park, S.M., Kim, M., Kim, S.H., Lim, S.Y., Ahn, J.C., Song, W.H., and Shim, W.J., Toxicology Mechanisms and Methods, 2012, vol. 22, no. 6, pp. 488–498. https://doi.org/10.3109/15376516.2012.678406

    Article  CAS  PubMed  Google Scholar 

  38. Kalam, K. and Marwick, T.H., Eur. J. Cancer, 2013, vol. 49, no. 13, pp. 2900–2909. https://doi.org/10.1016/j.ejca.2013.04.030

    Article  CAS  PubMed  Google Scholar 

  39. Merino, P., Maiuolo, L., Delso, I., Algieri, V., de Nino, A., and Tejero, T., RSC Advances, 2017, vol. 7, pp. 10947–10967. https://doi.org/10.1039/c6ra28316k

    Article  CAS  Google Scholar 

  40. Weitz-Schmidt, G., Welzenbach, K., Dawson, J., and Kallen, J., J. Biol. Chem., 2004, vol. 279, no. 45, pp. 46764–46771. https://doi.org/10.1074/jbc.m407951200

    Article  CAS  PubMed  Google Scholar 

  41. Stach, K., Nguyen, X.D., Lang, S., Elmas, E., Weiss, C., Borggrefe, M., Fischer, J., and Kälsch, T., Cardiology J., 2012, vol. 19, no. 1, pp. 20–28. https://doi.org/10.5603/cj.2012.0005

    Article  Google Scholar 

  42. Wassmann, S., Laufs, U., Müller, K., Konkol, C., Ahlbory, K., Bäumer, A.T., Linz, W., Böhm, M., and Nickenig, G., Arteriosclerosis, Thrombosis and Vascular Biology, 2002, vol. 22, no. 2, pp. 300–305. https://doi.org/10.1161/hq0202.104081

    Article  CAS  Google Scholar 

  43. Thompson, P.D., Panza, G., Zaleski, A., and Taylor, B., J. Am. College Cardiol., 2016, vol. 67, no. 20, pp. 2395–2410. https://doi.org/10.1016/j.jacc.2016.02.071

    Article  CAS  Google Scholar 

  44. Spence, D.J. and Dresser, G.K., J. Am. Heart Assoc., 2016, vol. 5, e002497. https://doi.org/10.1161/jaha.115.002497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kazakov, R.E., Evteev, V.A., Muslimova, O.V., Mazarkina, I.A., and Demchenkova, E.Yu., International Journal of Applied and Fundamental Research, 2016, vol. 8, pp. 691–698.

    Google Scholar 

  46. Venardos, N., Deng, X.S., Yao, Q., Weyant, M.J., Reece, T.B., Meng, X., and Fullerton, D.A., J. Surgical Res., 2018, vol. 230, pp. 101–109. https://doi.org/10.1016/j.jss.2018.04.054

    Article  CAS  Google Scholar 

  47. Teplyakov, A.T., Svarovskaya, A.V., Suslova, T.E., Gusakova, A.M., Lavrov, A.G., and Nasrashvili, N.V., Siberian Medical Journal, 2016, vol. 31, no. 4, pp. 13–20. https://doi.org/10.29001/2073-8552-2016-31-4-13-20

    Article  Google Scholar 

  48. Wang, S., Cheng, Z.-Y., Chen, X.-J., and Xue, H.-Z., Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, no. 24, pp. 8990–8998. https://doi.org/10.26355/eurrev_201812_16670

    Article  CAS  PubMed  Google Scholar 

  49. Bahrami, A., Parsamanesh, N., Atkin, S.L., Banach, M., and Sahebkar, A., Pharmacol. Res., 2018, vol. 135, pp. 230–238. https://doi.org/10.1016/j.phrs.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  50. Kalashnik, D.N. and Volkov, V.I., Crimean Therapeutic Journal, 2006, vol. 3, pp. 78–81.

    Google Scholar 

  51. Lushnikova, E.L., Nikityuk, D.B., Klinnikova, M.G., Koldysheva, E.V., and Mzhelskaya, M.M., Morpholo-giya, 2016, vol. 150, no. 6, pp. 29–33.

    Google Scholar 

  52. Polegato, B.F., Minicucci, M.F., Azevedo, P.S., Carvalho, R.F., Chiuso-Minicucci, F., Pereira, E.J., Paiva, S.A.R., Zornoff, L.A.M., Okoshi, M.P., Matsubara, B.B., and Matsubara, L.S., Cellular Physiol. Biochem., 2015, vol. 25, no. 5, pp. 1924–1933. https://doi.org/10.1159/000374001

    Article  CAS  Google Scholar 

  53. Spallarossa, P., Altieri, P., Garibaldi, S., Ghigliotti, G., Barisione, C., Manca, V., Fabbi, P., Ballestrero, A., Brunelli, C., and Barsotti, A., Cardiovascular Res., 2006, vol. 69, no. 3, pp. 736–745.

    Article  CAS  Google Scholar 

  54. Kamio, K., Liu, X.D., Sugiura, H., Togo, S., Kawasaki, S., Wang, X., Ahn, Y., Hogaboam, C., and Rennard, S.I., Eur. Respiratory J., 2010, vol. 35, pp. 637–646. https://doi.org/10.1183/09031936.00134707

    Article  CAS  Google Scholar 

  55. Izidoro-Toledo, T.C., Guimaraes, D.A., Belo, V.A., Gerlach, R.F., and Tanus-Santos, J.E., Naunyn Schmiedeberg’s Archives of Pharmacology, 2011, vol. 383, no. 6, pp. 547–554. https://doi.org/10.1007/s00210-011-0623-0

    Article  CAS  PubMed  Google Scholar 

  56. Lushnikova, E.L., Mzhelskaya, M.M., Koldysheva, E.V., and Klinnikova, M.G., Siberian Scientific Medical Journal, 2018, vol. 38, no. 6, pp. 5–12. https://doi.org/10.15372/ssmj20180601

    Article  Google Scholar 

  57. Chen, T., Zhou, G., Zhu, Q., Liu, X., Ha, T., Kelley, J.L., Kao, R.L., Williams, D.L., and Li, C., J. Chemother., 2010, vol. 22, no. 6, pp. 402–406. https://doi.org/10.1179/joc.2010.22.6.402

    Article  CAS  PubMed  Google Scholar 

  58. Koldysheva, E.V., Klinnikova, M.G., Ivleva, E.K., Listvyagova, N.A., and Lushnikova, E.L., Modern Problems of Science and Education, 2016, no. 6.https://doi.org/10.17513/spno.25577

  59. Nakajima, K., Sug, H., Matsuno, H., Ishisaki, A., Hirade, K., and Kozawa, O., Life Sci., 2006, vol. 79, no. 12, pp. 1214–1220. https://doi.org/10.1097/00005344-200403000-00002

    Article  CAS  PubMed  Google Scholar 

  60. Dichtl, W., Dulak, J., Frick, M., Alber, H.F., Schwarzacher, S.P., Ares, M.P.S., Nilsson, J., Pachinger, O., and Weidinger, F., Arteriosclerosis, Thrombosis, Vascular and Biology, 2003, vol. 23, no. 1, pp. 58–63. https://doi.org/10.1161/01.atv.0000043456.48735.20

    Article  CAS  Google Scholar 

  61. Hisada, T., Ayaori, M., Ohrui, N., Nakashima, H., Nakaya, K., Uto-Kondo, H., Yakushiji, E., Takiguchi, S., Terao, Y., Miyamoto, Y., Adachi, T., Nakamura, H., Ohsuzu, F., Ikewaki, K., and Sakurai, Y., Cardiovasc. Res., 2012, vol. 95, pp. 251–259. https://doi.org/10.1093/cvr/cvs110

    Article  CAS  PubMed  Google Scholar 

  62. Mason, P.R., Walter, M.F., and Jacob, R.F., Circulation, 2004, vol. 109, pp. II34–II41. https://doi.org/10.1161/01.cir.0000129503.62747.03

    Article  PubMed  Google Scholar 

  63. Mason, P.R. and Jacob, R.F., Circulation, 2003, vol. 107, no. 17, pp. 2270–2273.

    Article  PubMed  Google Scholar 

  64. Li, R., Fang, W., Cao, S., Li, Y., Wang, J., Xi, S., Zhang, B., and He, Y., Pharmazie, 2013, vol. 68, no. 4, pp. 261–269.

    PubMed  Google Scholar 

  65. Tycinska, A.M., Janica, J., Mroczko, B., Musial, W.J., Sawicki, R., Sobkowicz, B., Kaminski, K., Lebkowska, U., and Szmitkowski, M., Arch. Med. Sci., 2011, no. 6, pp. 955–962. https://doi.org/10.5114/aoms.2011.26606

  66. Ventura-Clapier, R., Garnier, A., and Veksler, V., J. Physiol., 2003, vol. 555, no. 1, pp. 1–13. https://doi.org/10.1113/jphysiol.2003.055095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuchmenko, E.B., Bulletin of the Novosibirsk State Pedagogical University, 2013, vol. 15, no. 5, pp. 79–94.

    Google Scholar 

  68. Alexandrov, A.A., Yadrikhinskaya, M.N., Kukharenko, S.S., and Shatskaya, O.A., Diabetes Mellitus, 2012, no. 2, pp. 70–76.

  69. Drapkina, O.M., Rational Pharmacotherapy in Cardiology, 2013, vol. 9, no. 4, pp. 444–447. https://doi.org/10.20996/1819-6446-2013-9-4-444-447

    Article  Google Scholar 

  70. Jiang, Z., Yu, B., and Li, Y., Medical Science Monitor, 2016, vol. 22, pp. 2825–2830. https://doi.org/10.12659/msm.897047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gruzdeva, O.V., Borodkina, D.A., Belik, E.V., Akbasheva, O.E., Palicheva, E.I., and Barbarash, O.L., Cardiology, 2019, vol. 59, no. 3, pp. 60–67. https://doi.org/10.18087/cardio.2019.3.10220

    Article  CAS  PubMed  Google Scholar 

  72. Seo, M., Inoue, I., Ikeda, M., Nakano, T., Takahashi, S., Katayama, S., and Komoda, T., PPAR Research, 2008, article ID 316306, https://doi.org/10.1155/2008/316306

  73. Nikolaevich, L.N. and Morozova, E.V., News of the National Academy of Sciences of Belarus. A Series of Biological Sciences, 2011, no. 1, pp. 92–96.

  74. Rahmatollahi, M., Baram, S.M., Rahimian, R., Saeedi Saravi, S.S., and Dehpour, A.R., Cardiovasc. Toxicol., 2016, vol. 16, no. 3, pp. 244–250. https://doi.org/10.1007/s12012-015-9332-0

    Article  CAS  PubMed  Google Scholar 

  75. Yano, M., Matsumura, T., Senokuchi, T., Ishii, N., Murata, Y., Taketa, K., Motoshima, H., Taguchi, T., Sonoda, K., Kukidome, D., Takuwa, Y., Kawada, T., Brownlee, M., Nishikawa, T., and Araki, E., Circulation Res., 2007, vol. 100, no. 10, pp. 1442–1451. https://doi.org/10.1161/01.res.0000268411.49545.9c

    Article  CAS  PubMed  Google Scholar 

  76. Yokoyama, C., Aoyama, T., Ido, T., Kakino, A., Shiraki, T., Tanaka, T., Nishigaki, K., Hasegawa, A., Fujita, Y., Sawamura, T., and Minatoguchi, S., PLoS One, 2016, vol. 11, no. 5, e0154994. https://doi.org/10.1371/journal.pone.0154994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, L., Cheng, L., Wang, Q., Zhou, D., Wu, Z., Shen, L., Zhang, L., and Zhu, J., Acta Biochimica et Biophysica Sinica (Shanghai), 2015, vol. 47, no. 3, pp. 174–182. https://doi.org/10.1093/abbs/gmu131

    Article  CAS  Google Scholar 

  78. Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J.G., Hasko, G., and Szabo, C., J. Pharmacol. Exper. Ther., 2002, vol. 300, no. 3, pp. 862–867. https://doi.org/10.1124/jpet.300.3.862

    Article  CAS  Google Scholar 

  79. Kalivendi, S.V., Konorev, E.A., Cunningham, S., Vanamala, S.K., Kaji, E.H., Joseph, J., and Kalyanaraman, B., Biochem. J., 2005, vol. 389, pp. 527–539. https://doi.org/10.1042/bj20050285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shati, A.A., Clin. Exper. Pharmacol. Physiol., 2020, vol. 47, pp. 660–676. https://doi.org/10.1111/1440-1681.13225

    Article  CAS  Google Scholar 

  81. Ikeda, S., Matsushima, S., Okabe, K., Ikeda, M., Ishikita, A., Tadokoro, T., Enzan, N., Yamamoto, T., Sada, M., Deguchi, H., Morimoto, S., Ide, T., and Tsutsui, H., Sci. Reps., 2019, vol. 9, 9850. https://doi.org/10.1038/s41598-019-46367-6

    Article  CAS  Google Scholar 

  82. Wen, S.-Y., Tsai, C.-Y., Pai, P.-Y., Chen, Y.-W., Yang, Y.-C., Aneja, R., Huang, C.-Y., and Kuo, W.-W., Environ. Toxicol., 2018, vol. 33, no. 1, pp. 93–103. https://doi.org/10.1002/tox.22500

    Article  CAS  PubMed  Google Scholar 

  83. Wang, S., Song, P., and Zou, M.H., J. Biol. Chem., 2012, vol. 287, no. 11, pp. 8001–8012. https://doi.org/10.1074/jbc.m111.315812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morisco, C., Seta, K., Hard, S.E., Lee, Y., Vatner, S.F., and Sadoshima, J., J. Biol. Chem., 2001, vol. 276, no. 30, pp. 28586–28597. https://doi.org/10.1074/jbc.m103166200

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi, S., Lackey, T., Huang, Y., Bisping, E., Pu, W.T., Boxer, L.M., and Liang, Q., FASEB J., 2006, vol. 20, no. 6, pp. 800–802. https://doi.org/10.1096/fj.05-5426fje

    Article  CAS  PubMed  Google Scholar 

  86. Krysko, D.V., Kaczmarek, A., Krysko, O., Heyndrickx, L., Woznicki, J., Bogaert, P., Cauwels, A., Takahashi, N., Magez, S., Bachert, C., and Vandenabeele, P., Cell Death Differentiation, 2011, vol. 18, pp. 1316–1325. https://doi.org/10.1038/cdd.2011.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Parakhonsky, A.P., Basic Research, 2006, no. 3, pp. 67–68.

  88. Bootman, M.D., Chehab, T., Bultynck, G., Parys, J.B., and Rietdorf, K., Cell Calcium, 2018, vol. 70, pp. 32–46. https://doi.org/10.1016/j.ceca.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  89. Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., and Liang, Q., J. Biol. Chem., 2010, vol. 285, no 1, pp. 793–804. https://doi.org/10.1074/jbc.m109.070037

    Article  CAS  PubMed  Google Scholar 

  90. Sabe, A.A., Elmadhun, N.Y., Sadek, A.A., Chu, L.M., Bianchi, C., and Sellke, F.W., J. Thor. Cardiovasc. Surg., 2014, vol. 148, no. 6, pp. 3172–3178. https://doi.org/10.1016/j.jtcvs.2014.07.104

    Article  CAS  Google Scholar 

  91. Andres, A.M., Hernandez, G., Lee, P., Huang, C., Ratliff, E.P., Sin, J., Thornton, C.A., Damasco, M.V., and Gottlieb, R.A., Antioxidant Redox Signaling, 2014, vol. 21, no. 14, pp. 1960–1973. https://doi.org/10.1089/ars.2013.5416

    Article  CAS  Google Scholar 

  92. Liu, D., Cui, W., Liu, B., Hu, H., Liu, J., Xie, R., Yang, X., Gu, G., Zhang, J., and Zheng H., Cell. Physiol. Biochem., 2014, vol. 33, no. 1, pp. 129–141. https://doi.org/10.1159/000356656

    Article  CAS  PubMed  Google Scholar 

  93. Koyuturk, M., Ersöz, M., and Altiok, N., Cancer Letts., 2007, vol. 250, no. 2, pp. 220–228. https://doi.org/10.1016/j.canlet.2006.10.009

    Article  CAS  Google Scholar 

  94. Radyukova, I.M., Druk, I.V., Nechaeva, G.I., Korennova, O.Yu., Reznikov, A.S., and Merkulov, V.N., Siberian Journal of Oncology, 2012, vol. 50, no. 2, pp. 73–78.

    Google Scholar 

  95. Chan, K.K., Oza, A.M., and Siu, L.L., Clin. Cancer Res., 2003, vol. 9, no. 1, pp. 10–19.

    CAS  PubMed  Google Scholar 

  96. Sassano, A., and Platanias, L.C., Cancer Letts., 2008, vol. 260, nos. 1–2, pp. 11–19. https://doi.org/10.1016/j.canlet.2007.11.036

    Article  CAS  Google Scholar 

  97. Klaan, N.K., Pronina, T.A., Akinshina, L.P., and Reshetnikova, V.V., Russian Journal of Biotherapy, 2014, vol. 13, no. 1, pp. 3–8.

    Google Scholar 

  98. Lersch, C., Schmelz, R., Erdmann, J., Hollweck, R., Schulte-Frohlinde, E., Eckel, F., Nader, M., and Schusdziarra, V., Hepatogastroenterology, 2004, vol. 51, no. 58, pp. 1099–1103.

    CAS  PubMed  Google Scholar 

  99. Liu,Y., Qin, A., Li, T., Qin, X., and Li, S., Gynecologic Oncology, 2014, vol. 133, no. 3, pp. 647–655. https://doi.org/10.1016/j.ygyno.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  100. Cho, S.J., Kim, J.S., Kim, J.M., Lee, J.Y., Jung, H.C., and Song, I.S., Int. J. Cancer, 2008, vol. 123, pp. 951–957. https://doi.org/10.1002/ijc.23593

    Article  CAS  PubMed  Google Scholar 

  101. Gao, J., Jia, W.D., Li, J.S., Wang, W., Xu, G.L., Ma, J.L., Ge, Y.S., Yu, J.H., Ren, W.H., Liu, W.B., and Zhang, C.H., J. Int. Med. Res., 2010, vol. 38, pp. 1413–1427. https://doi.org/10.1177/147323001003800423

    Article  CAS  PubMed  Google Scholar 

  102. Kochuparambil, S.T., Al-Husein, B., Goc, A., Soliman, S., and Somanath, P.R., J. Pharmacol. Exper. Ther., 2011, vol. 336, pp. 496–505. https://doi.org/10.1124/jpet.110.174870

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of funding under the State assignment of the Program “Cellular and molecular mechanisms of damage and remodeling of tissues and organs in metabolic disorders and toxic effects, development of technologies for stimulating cytoprotective reactions and tissue-specific reparative regeneration.” The scientific theme code: 0535-2019-0028, the State registration number AAAA-A19-119020790017-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tursunova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work does not contain any research using humans and animals as research objects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Medvedev

Abbreviations used: AIF—apoptosis inducing factor; Akt—RAC-alpha serine/threonine-protein kinase; AMPK—AMP-activated protein kinase; AP-1—activator protein-1; Apaf-1—аpoptotic protease activating factor 1; ER—endoplasmic reticulum ; ET-1—endothelin; Fas/Fasl—the system of the Fas receptor, apoptosis antigen 1 and its Fasl ligand; FPP—farnesyl pyrophosphate; GAPs—GTPase-activating proteins; GEFs—ganine nucleotide exchange factors; GGPP—geranylgeranyl pyrophosphate; GLUT-1, GLUT-4—glucose transporters-1, -4; GSH—reduced glutathione; GSK-3b—glycogen synthase kinase 3 beta; HbA (1с)—glycated hemoglobin; HIF-1—hypoxia-inducible factor-1; HMGB1—high-mobility group protein B1; HMG-CoA reductase—hydroxymethylglutaryl coenzyme A reductase; ICAM-1—inter-cellular adhesion molecule 1; IL-1, -2, -6, -8, ‑18—interleukins; LDL—low-density lipoprotein; LFA-1—lymphocyte function-associated antigen 1, containing an allosteric site termed as the lovastatin site (L-site); Lp-PLA2—lipoprotein-associated phospholipase A2; LOX-1—lectin-like oxidized low-density lipoprotein receptor-1; МАРК—mitogen-activated protein kinase (mitogen-activated protein kinases; JNK, ERK, p38 MAPK); МСР-1—monocyte chemoattractant protein-1; MMPs—matrix metalloproteinases; mTOR—mammalian target of rapamycin; NFAT-1,-2,-4—nuclear factor of activated T-cells; NF-κB—nucleus factor kappa B; NO—nitric oxide; NOO—peroxynitrite; NOS—nitrogen oxide synthase: (еNOS—endothelial nitrogen oxide synthase; iNOS—inducible nitrogen oxide synthase); Nrf2—nuclear factor erythroid 2‑related factor 2, nuclear E2-related factor 2; oxLDL—oxidized low-density lipoprotein cholesterol; p91phox, p22phox, p67phox, p47phox, p40phox—cytosolic proteins, subunits of NAD(P)H-oxidase; pCAMK II—calmodulin-dependent protein kinase II; PI3K—phosphoinositide 3-kinase; PPARs—peroxisome proliferator-activated receptors; PTEN—phosphatase and tensin homolog; Rho, Cdс42, Rac1, RhoA (Rac2)—monomeric G-proteins of the GTPase family; Rho-GTPases—Ras-homologous GTPases; RNS—reactive nitrogen species; Rock – RhoA-associated protein kinase; ROS—reactive oxygen species; S6K1—ribosomal protein kinase S6 beta-1; SERKA—Ca2+-ATPase; SIRT1—deacetylase sirtuin 1; SOD—superoxide dismutase; TGF-β1—transforming growth factor beta; TLR2, TLR4, TLR9—Toll-like receptors-2, -4, -9; TNFα—tumor necrosis factor α ; Top II—topoisomerase II; VCAM-1—vascular cell adhesion molecule 1; VEGF—vascular endothelial growth factor; VEGFR2—vascular endothelial growth factor receptor 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tursunova, N.V., Klinnikova, M.G., Babenko, O.A. et al. Molecular Mechanisms of the Cardiotoxic Action of Anthracycline Antibiotics and Statin-Induced Cytoprotective Reactions of Cardiomyocytes. Biochem. Moscow Suppl. Ser. B 15, 89–104 (2021). https://doi.org/10.1134/S1990750821020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821020116

Keywords:

Navigation