Skip to main content
Log in

Selenium Compounds in Redox Regulation of Inflammation and Apoptosis

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Monocytes and macrophages play a key role in the development of inflammation induced by lipopolysaccharides (LPS), absorbed from the intestine: these cells form reactive oxygen species (ROS) and cytokines, thus initiating the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an “internal” TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the “death domain” (DD) initiate an “external” caspase apoptosis cascade or necrosis activation causing necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKα/β, NF-κB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS promotes development of inflammation and apoptosis, and antioxidants, have an opposite effect: they stabilize the signaling cascades, prevent the vicious circle of oxidative stress, accompanied by inflammation and apoptosis. Reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione) requires antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR), while the AO enzymes SOD, catalase, GPX are needed for ROS degradation. The key AO enzymes (TRXR and GPX) are selenium-dependent and therefore selenium deficiency leads to a decrease in the antioxidant defense, development of oxidative stress, inflammation, and/or apoptosis in various cell types. The Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. Selenium deficiency also influences expression of some genes. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as interaction between cells, redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors preventing selenium deficiency and as antitumor drugs due to their toxicity and involvement in regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organoselenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance and regulates inflammation and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hayakawa, R., Hayakawa, T., Takeda, K., and Ichijo, H., Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2012, vol. 88, pp. 434–453. https://doi.org/10.2183/pjab.88.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clark, A. and Mach, N., Front Physiol., 2017, vol. 8, 319. https://doi.org/10.3389/fphys.2017.00319

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fan, J., Frey, R.S., and Malik A.B., J. Clin. Invest., 2003, vol. 112, no. 8, pp. 1234–1243. https://doi.org/10.1172/JCI18696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fedotov, I.V., Rusetskaya, N.Yu., Bobyleva, E.V., and Borodulin, V.B., Patogenez, 2018, vol. 16, no. 3, pp. 14–22. https://doi.org/10.25557/2310-0435.2018.03.14-22

    Article  Google Scholar 

  5. Strandberg, L., Verdrengh, M., Enge, M., Andersson, N., Amu, S., Onnheim, K., Benrick, A., Brisslert, M., Bylund, J., Bokarewa, M., Nilsson, S., and Jansson, J.O., PLoS One, 2009, vol. 4, e7605. https://doi.org/10.1371/journal.pone.0007605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Heijden, R.A., Bijzet, J., Meijers, W.C., Yaka-la, G.K., Kleemann, R., Nguyen, T.Q., de Boer, R.A., Schalkwijk, C.G., Hazenberg, B.P., Tietge, U.J., and Heeringa, P., Sci. Rep., 2015, vol. 5, 16474. https://doi.org/10.1038/srep16474

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khoso, P.A., Yang, Z., Liu, C., and Li, S., Biol. Trace Elem. Res., 2015, vol. 167, pp. 48–55. https://doi.org/10.1007/s12011-015-0282-y

    Article  CAS  PubMed  Google Scholar 

  8. Liang, Y., Lin, S.L., Wang, C.W., Yao, H.D., Zhang, Z.W., and Xu, S.W., Biol. Trace Elem. Res., 2014, vol. 160, pp. 41–48. https://doi.org/10.1007/s12011-014-0024-6

    Article  CAS  PubMed  Google Scholar 

  9. Lescure, A., Rederstorff, M., Krol, A., Guicheney, P., and Allamand, V., Biochim. Biophys. Acta, 2009, vol. 1790, pp. 1569–1574. https://doi.org/10.1016/j.bbagen.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  10. Gao, X., Zhang, Z., Li, Y., Shen, P., Hu, X., Cao, Y., and Zhang, N., Biol. Trace Elem. Res., 2016, vol. 172, pp. 449–457. https://doi.org/10.1007/s12011-015-0614-y

    Article  CAS  PubMed  Google Scholar 

  11. Yang, T., Zhao, Z., Liu, T., Zhang, Z., Wang, P., Xu, S., Lei, X.G., and Shan, A., Oncotarget, 2017, vol. 8, pp. 12 428–12 439. https://doi.org/10.18632/oncotarget.14550

    Article  Google Scholar 

  12. Patel, U., Rajasingh, S., Samanta, S., Cao, T., Dawn, B., and Rajasingh, J., Drug Discov. Today, 2017, vol. 22, no. 1, pp. 186–193. https://doi.org/10.1016/j.drudis.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Mills E.L. and O’Neill, L.A., Eur. J. Immunol., 2016, vol. 46, pp. 13–21. https://doi.org/10.1002/eji.201445427

    Article  CAS  PubMed  Google Scholar 

  14. Murphy, M.P., Biochem. J., 2009, vol. 417, pp. 1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  Google Scholar 

  15. Sazanov, L.A., Biochemistry, 2007, vol. 46, pp. 2275–2288. https://doi.org/10.1021/bi602508x

    Article  CAS  PubMed  Google Scholar 

  16. Kussmaul, L. and Hirst, J., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 7607–7612. https://doi.org/10.1073/pnas.0510977103

    Article  CAS  PubMed  Google Scholar 

  17. Sangiuliano, B., Pérez, N.M., Moreira, D.F., and Belizário, J.E., Mediators Inflamm., 2014, vol. 2014, 821043. https://doi.org/10.1155/2014/821043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stottmeier, B. and Dick, T.P., Free Radic. Biol. Med., 2016, vol. 101, pp. 93–101. https://doi.org/10.1016/j.freeradbiomed.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Into, T., Inomata, M., Nakashima, M., Shibata, K., Häcker, H., and Matsushita, K., Mol. Cell. Biol., 2008, vol. 28, pp. 1338–1347. https://doi.org/10.1128/MCB.01412-07

    Article  CAS  PubMed  Google Scholar 

  20. Hanschmann, E.-M., Godoy, J.R., Berndt, C., Hudemann, C., and Lillig, C.H., Antioxid. Redox Signal., 2013, vol. 19, pp. 1539–1605. https://doi.org/10.1089/ars.2012.4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Daily, D., Vlamis-Gardikas, A., Offen, D., Mittelman, L., Melamed, E., Holmgren, A., and Barzilai, A., J. Biol. Chem., 2001, vol. 276, pp. 1335–1344. https://doi.org/10.1074/jbc.M008121200

    Article  CAS  PubMed  Google Scholar 

  22. Hirota, K., Matsui, M., Murata, M., Takashima, Y., Cheng, F.S., Itoh, T., Fukuda, K., and Yodoi, J., Biochem. Biophys. Res. Commun., 2000, vol. 274, pp. 177–182. https://doi.org/10.1006/bbrc.2000.3106

    Article  CAS  PubMed  Google Scholar 

  23. Lorenzen, I., Mullen, L., Bekeschus, S., and Hanschmann, E.-M., Oxid. Med. Cell Longev., 2017, vol. 2017, 8 459 402. https://doi.org/10.1155/2017/8459402

    Article  CAS  Google Scholar 

  24. Abais, J.M., Xia, M., Zhang, Y., Boini, K.M., Li, P.-L., Antioxid. Redox Signal., 2015, vol. 22, pp. 1111–1129. https://doi.org/10.1089/ars.2014.5994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishiyama, A., Matsui, M., Iwata, S., Hirota, K., Masutani, H., Nakamura, H., Takagi, Y., Sono, H., Gon, Y., and Yodoi, J., J. Biol. Chem., 1999, vol. 274, pp. 21 645–21 650. https://doi.org/10.1074/jbc.274.31.21645

    Article  Google Scholar 

  26. Abderrazak, A., Syrovets, T., Couchie, D., El Hadri, K., Friguet, B., Simmet, T., and Rouis, M., Redox Biol., 2015, vol. 4, pp. 296–307. https://doi.org/10.1016/j.redox.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sengupta, R., Billiar, T.R., Kagan, V.E., and Stoyanovsky, D.A., Biochem. Biophys. Res. Commun., 2010, vol. 391, pp. 1127–1130. https://doi.org/10.1016/j.bbrc.2009.12.036

    Article  CAS  PubMed  Google Scholar 

  28. Sengupta, R. and Holmgren, A., Biochim. Biophys. Ac-ta, 2012, vol. 1820, no. 6, pp. 689–700. https://doi.org/10.1016/j.bbagen.2011.08.012

    Article  CAS  Google Scholar 

  29. Sumbayev, V.V., Arch. Biochem. Biophys., 2003, vol. 415, pp. 133–136.

    Article  CAS  Google Scholar 

  30. Kelleher, Z.T., Sha, Y., Foster, M.W., Foster, W.M., Forrester, M.T., and Marshall, H.E., J. Biol. Chem., 2014, vol. 289, pp. 3066–3072. https://doi.org/10.1074/jbc.M113.503938

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell, D.A., Morton, S.U., Fernhoff, N.B., and Marletta, M.A., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 11 609–11 614. https://doi.org/10.1073/pnas.0704898104

    Article  CAS  Google Scholar 

  32. Mitchell, D.A., and Marletta, M.A., Nat. Chem. Biol., 2005, vol. 1, pp. 154–158. https://doi.org/10.1038/nchembio720

    Article  CAS  PubMed  Google Scholar 

  33. Li, H., Wan, A., Xu, G., Ye, D., Acta Biochim. Biophys. Sin., 2013, vol. 45, pp. 153–161. https://doi.org/10.1093/abbs/gms103

    Article  CAS  PubMed  Google Scholar 

  34. Nagarajan, N., Oka, S., and Sadoshima, J., Free Radic. Biol. Med., 2017, vol. 109, pp. 125–131. https://doi.org/10.1016/j.freeradbiomed.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  35. Cardenas-Rodriguez, M., and Tokatlidis, K., FEBS Lett., 2017, vol. 591, pp. 2661–2670. https://doi.org/10.1002/1873-3468.12766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tagaya, Y., Maeda, Y., Mitsui, A., Kondo, N., Mat-sui, H., Hamuro, J., Brown, N., Arai, K., Yokota, T., Wakasugi, H., EMBO J., 1989, vol. 8, pp. 757–764.

    Article  CAS  Google Scholar 

  37. Nakamura, H., Nakamura, K., and Yodoi, J., Annu. Rev. Immunol., 1997, vol. 15, pp. 351–369.

    Article  CAS  Google Scholar 

  38. Yamawaki, H. and Berk, B.C., Curr. Opin. Nephrol. Hypertens., 2005, vol. 14, pp. 149–153.

    Article  CAS  Google Scholar 

  39. Holmgren, A., Annu. Rev. Biochem., 1985, vol. 54, pp. 237–271.

    Article  CAS  Google Scholar 

  40. Holmgren, A. and Lu, J., Biochem. Biophys. Res. Commun., 2010, vol. 396, pp. 120–124. https://doi.org/10.1016/j.bbrc.2010.03.083

    Article  CAS  PubMed  Google Scholar 

  41. Barglow, K.T., Knutson, C.G., Wishnok, J.S., Tannenbaum, S.R., and Marletta, M.A., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. E600–E606. https://doi.org/10.1073/pnas.1110736108

    Article  PubMed  Google Scholar 

  42. Wu, C., Liu, T., Chen, W., Oka, S., Fu, C., Jain, M.R., Parrott, A.M., Baykal, A.T., Sadoshima, J., and Li, H., Mol. Cell Proteom., 2010, vol. 9, pp. 2262–2275. https://doi.org/10.1074/mcp.M110.000034

    Article  CAS  Google Scholar 

  43. Weichsel, A., Brailey, J.L., and Montfort, W.R., Biochemistry, 2007, vol. 46, pp. 1219–1227. https://doi.org/10.1021/bi061878r

    Article  CAS  PubMed  Google Scholar 

  44. Weichsel, A., Kem, M., Montfort, W.R., Protein Sci., 2010, vol. 19, pp. 1801–1806. https://doi.org/10.1002/pro.455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sengupta, R. and Holmgren, A., Antioxid. Redox Signal., 2013, vol. 18, pp. 259–269. https://doi.org/10.1089/ars.2012.4716

    Article  CAS  PubMed  Google Scholar 

  46. Benhar, M., Forrester, M.T., Hess, D.T., and Stamler, J.S., Science, 2008, vol. 320, pp. 1050–1054. https://doi.org/10.1126/science.1158265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diamond, A.M., Nutrients, 2015, vol. 7, no. 5, pp. 3938–3948. https://doi.org/10.3390/nu7053938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, J. and Holmgren, A., J. Biol. Chem., 2009, vol. 284, no. 2, pp. 723–727. https://doi.org/10.1074/jbc.R800045200

    Article  CAS  PubMed  Google Scholar 

  49. Hangauer, M.J., Viswanathan, V.S., Ryan, M.J., Bole, D., Eaton, J.K., Matov, A., Galeas, J., Dhruv, H.D., Berens, M.E., Schreiber, S.L., McCormick, F., and McManus, M.T., Nature, 2017, vol. 551, no. 7679, pp. 247–250. https://doi.org/10.1038/nature24297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, J. and Holmgren, A., Free Radic. Biol. Med., 2014, vol. 66, pp. 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  51. Pitts, M.W. and Hoffmann, P.R., Cell Calcium, 2018, vol. 70, pp. 76–86.  https://doi.org/10.1016/j.ceca.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, X., Zhang, L., Zhu, J.H., and Cheng, W.H., IUBMB Life, 2016, vol. 68, no. 1, pp. 5–12. https://doi.org/10.1002/iub.1455

    Article  CAS  PubMed  Google Scholar 

  53. Qazi, I.H., Angel, C., Yang, H., Pan, B., Zoidis, E., Zeng, C.J., Han, H., Zhou, G.B., Molecules, 2018, vol. 23, no. 12, pii: E3053. https://doi.org/10.3390/molecules23123053

    Article  CAS  PubMed  Google Scholar 

  54. Rose, A.H. and Hoffmann, P.R., Thromb. Haemost., 2015, vol. 113, no. 3, pp. 494–504. https://doi.org/10.1160/TH14-07-0603

    Article  PubMed  Google Scholar 

  55. Hawkes, W.C. and Tappel, A.L., Biochim. Biophys. Acta, 1983, vol. 739, pp. 225–234. https://doi.org/10.1016/0167-4781(83)90033-7

    Article  CAS  PubMed  Google Scholar 

  56. Lammi, M.J. and Qu, C., Int. J. Mol. Sci., 2018, vol. 19, no. 9. pii: E2665. https://doi.org/10.3390/ijms19092665

    Article  CAS  PubMed  Google Scholar 

  57. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., Morrison, B., 3rd, and Stockwell, B.R., Cell, 2012, vol. 149, pp. 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu, B., Chen, X.B., Ying, M.D., He, Q.J., Cao, J., and Yang, B., Front. Pharmacol., 2017, vol. 8, 992. https://doi.org/10.3389/fphar.2017.00992

    Article  CAS  PubMed  Google Scholar 

  59. Seibt, T.M., Proneth, B., Conrad M., Free Radic. Biol. Med., 2018, vols. S0891–5849, no. 18, pp. 31 593–31 594. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  Google Scholar 

  60. Praticò, D., Tangirala, R.K., Rader, D.J., Rokach, J., and FitzGerald, G.A., Nat. Med., 1998, vol. 4, pp. 1189–1192. https://doi.org/10.1038/2685

    Article  PubMed  Google Scholar 

  61. Monnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J.P., and Colette, C., JAMA, 2006, vol. 295, pp. 1681–1687. https://doi.org/10.1001/jama.295.14.1681

    Article  CAS  Google Scholar 

  62. Ranjan, R., Swarup, D., Naresh, R., and Patra, R.C., Vet. Res. Comm., 2005, vol. 29, pp. 27–34.

    Article  CAS  Google Scholar 

  63. Bellinger, F.P., Raman, A.V., Reeves, M.A., and Berry, M.J., Biochem. J., 2009, vol. 422, pp. 11–22. https://doi.org/10.1042/BJ20090219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sordillo, L.M., Vet. Med. Int., 2013, vol. 2013, 154045. https://doi.org/10.1155/2013/154045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mattmiller, S.A., Carlson, B.A., and Sordillo, L.M., J. Nutr. Sci., 2013, vol. 2, 13. https://doi.org/10.1017/jns.2013.17

    Article  CAS  Google Scholar 

  66. Wang, Q., Huang, J., Zhang, H., Lei, X., Du, Z., Xiao, C., Chen, S., and Ren, F., Biol. Trace Elem. Res., 2017, vol. 176, pp. 407–415. https://doi.org/10.1007/s12011-016-0823-z

    Article  CAS  PubMed  Google Scholar 

  67. Tonelli, C., Chio, I.I.C., and Tuveson, D.A., Antioxid. Redox Signal., 2018, vol. 29, no. 17, pp. 1727–1745. https://doi.org/10.1089/ars.2017.7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, Q.M. and Maltagliati, A.J., Physiol. Genomics, 2018, vol. 50, no. 2, pp. 77–97. https://doi.org/10.1152/physiolgenomics.00041.2017

    Article  CAS  PubMed  Google Scholar 

  69. Jaramillo, M.C. and Zhang, D.D., Genes Dev., 2013, vol. 27, no. 20, pp. 2179–2191. https://doi.org/10.1101/gad.225680.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tao, S., Liu, P., Luo, G., Rojo de la Vega, M., Chen, H., Wu, T., Tillotson, J., Chapman, E., and Zhang, D.D., Mol. Cell Biol., 2017, vol. 37, no. 8, pii: e00660-16. https://doi.org/10.1128/MCB.00660-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kansanen, E., Kuosmanen, S.M., Leininen, H., and Levonen, A.L., Redox. Biol., 2013, vol. 1, pp. 45–49. https://doi.org/10.1016/j.redox.2012.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuhn, A.M., Tzieply, N., Schmid, M.V., von Knethen, A., Namgaladze, D., Yamamoto, M., and Brüne, B., Free Radic. Biol. Med., 2011, vol. 50, pp. 1382–1391.

    Article  CAS  Google Scholar 

  73. Zenkov, N.K., Kozhin P.M., Chechushkov, A.V., Martinovich, G.G., Kandalintseva, N.V., and Menshchikova, E.B., Biochemistry (Moscow), 2017, vol. 82, no. 5, pp. 749–759.

    Google Scholar 

  74. Stewart, J.D., Hengstler, J.G., and Bolt, H.M., Arch. Toxicol., 2011, vol. 85, 239. https://doi.org/10.1007/s00204-011-0694-1

    Article  CAS  PubMed  Google Scholar 

  75. Reszka, E., Wieczorek, E., Jablonska, E., Janasik, B., Fendler, W., and Wasowicz, W., J. Trace Elem. Med. Bi-ol., 2015, vol. 30, pp. 102–106. https://doi.org/10.1016/j.jtemb.2014.11.008

    Article  CAS  Google Scholar 

  76. Cao, T., Jin, S., Fei, D., Kang, K., Jiang, L., Lian, Z., Pan, S., Zhao, M., and Zhao, M., Inflammation, 2016, vol. 39, pp. 651–662. https://doi.org/10.1007/s10753-015-0290-2

    Article  CAS  PubMed  Google Scholar 

  77. Lv, H., Yu, Z., Zheng, Y., Wang, L., Qin, X., Cheng, G., and Ci, X., Int. J. Biol. Sci., 2016, vol. 12, pp. 72–86. https://doi.org/10.7150/ijbs.13188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, X.I.D., Liu, B., Wang, X., Yu, Q., and Fang, R., Int. J. Mol. Sci., 2018, vol. 19, 848. https://doi.org/10.3390/ijms19030848

    Article  CAS  PubMed Central  Google Scholar 

  79. Ryoo, I.G., Shin, D.H., and Kang, K.S., Arch. Pharmacal. Res., 2015, vol. 38, pp. 272–281. https://doi.org/10.1007/s12272-014-0380-y

    Article  CAS  Google Scholar 

  80. Park, J.S., Jung, J.S., Jeong, Y.H., Hyun, J.W., Le, T.K., and Kim, D.H., J. Neurochem., 2011, vol. 119, pp. 909–919. https://doi.org/10.1111/j.1471-4159.2011.07395.x

    Article  CAS  PubMed  Google Scholar 

  81. Malassagne, B., Ferret, P.J., Hammond, R., Tulliez, M., Bedda, S., Trébéden, H., Jaffray, P., Calmus, Y., Weill, B., and Batteux, F., Gastroenterology, 2001, vol. 121, pp. 1451–1459.

    Article  CAS  Google Scholar 

  82. Chiba, T., Takahashi, S., Sato, N., Ishii, S., and Kikuchi, K., Eur. J. Immunol., 1996, vol. 26, pp. 1164–1169. https://doi.org/10.1002/eji.1830260530

    Article  CAS  PubMed  Google Scholar 

  83. Al-Gayyar, M.M., Abdelsaid, M.A., Matragoon, S., Pillai, B.A., and El-Remessy, A.B., Br. J. Pharmacol., 2011, vol. 164, pp. 170–180. https://doi.org/10.1111/j.1476-5381.2011.01336.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kataoka, K., Tokutomi, Y., Yamamoto, E., Nakamura, T., Fukuda, M., Dong, Y.F., Ichijo, H., Ogawa, H., and Kim-Mitsuyama, S., J. Hypertens., 2011, vol. 29, pp. 76–84. https://doi.org/10.1097/HJH.0b013e32833fc8b0

    Article  CAS  PubMed  Google Scholar 

  85. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H., EMBO J., 1998, vol. 17, pp. 2596–2606. https://doi.org/10.1093/emboj/17.9.2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng, L., Jiang, W.D., Feng, L., Wu, P., Tang, L., Kuang, S.Y., Zeng, Y.Y., Zhou, X.Q., and Liu, Y., Fish Shellfish Immunol., 2018, vol. 82, pp. 408–420. https://doi.org/10.1016/j.fsi.2018.08.038

    Article  CAS  PubMed  Google Scholar 

  87. Liu, C., Sun, Z., Xu, Z., Liu, T., Pan, T., and Li, S., Oncotarget, 2017, vol. 8, pp. 58 513–58 525. https://doi.org/10.18632/oncotarget.17222

    Article  Google Scholar 

  88. Li, M.D., Cheng, W.P., Shi, M.X., Ge, T.D., Zheng, X.L., Wu, D.Y., Hu, X.Y., Luo, J.C., Li, F.L., and Li, H., Mol. Med. Rep., 2017, vol. 15, pp. 988–994. https://doi.org/10.3892/mmr.2016.6099

    Article  CAS  PubMed  Google Scholar 

  89. Domracheva, I., Kanepe-Lapsa, I., Jackevica, L., Vasiljeva, J., and Arsenyan, P., Life Sci., 2017, vol. 186, pp. 92–101. https://doi.org/10.1016/j.lfs.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  90. Vunta, H., Davis, F., Palempalli, U.D., Bhat, D., Arner, R.J., Thompson, J.T., Peterson, D.G., Reddy, C.C., and Prabhu, K.S., J. Biol. Chem., 2007, vol. 282, pp. 17 964–17 973. https://doi.org/10.1074/jbc.M703075200

    Article  Google Scholar 

  91. Vunta, H., Belda, B.J., Arner, R.J., Channa Reddy, C., Vanden Heuvel, J.P., and Sandeep Prabhu, K., Mol. Nutr. Food Res., 2008, vol. 52, pp. 1316–1323. https://doi.org/10.1002/mnfr.200700346

    Article  CAS  PubMed  Google Scholar 

  92. Meplan, C., Johnson, I.T., Polley, A.C., Cockell, S., Bradburn, D.M., Commane, D.M., Arasaradnam, R.P., Mulholland, F., Zupanic, A., Mathers, J.C., and Hesketh, J., FASEB J., 2016, vol. 30, no. 8, pp. 2812–2825. https://doi.org/10.1096/fj.201600251R

    Article  CAS  PubMed  Google Scholar 

  93. Radchenko, E.N., Nizov, A.A., Ivanova, A.Yu., Sidorova, Yu.S., and Abramova, L.S., Voprosy Pitaniya, 2016, vol. 85, no. 3, pp. 96–103.

    CAS  Google Scholar 

  94. Shadrina, V.D., Potolitzyna, N.N., Parshukova, O.I., Yeseva, T.V., and Boyko, E.R., Ekologiya Cheloveka, 2018, no. 3, pp. 33–38.

  95. Monsen, E.R., J. Am. Diet. Assoc., 2000, vol. 100, pp. 637–640. https://doi.org/10.1016/S0002-8223(00)00189-9

    Article  CAS  PubMed  Google Scholar 

  96. Stoffaneller, R. and Morse, N.L., Nutrients, 2015, vol. 7, pp. 1494–1537. https://doi.org/10.3390/nu7031494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lippman, S.M., Klein, E.A., Goodman, P.J., Lucia, M.S., Thompson, I.M., Ford, L.G., Parnes, H.L., Minasian, L.M., Gaziano, J.M., Hartline, J.A., Parsons, J.K., Bearden, J.D., 3rd, Crawford, E.D., Goodman, G.E., Claudio, J., Winquist, E., Cook, E.D., Karp, D.D., Walther, P., Lieber, M.M., Kristal, A.R., Darke, A.K., Arnold, K.B., Ganz, P.A., Santella, R.M., Albanes, D., Taylor, P.R., Probstfield, J.L., Jagpal, T.J., Crowley, J.J., Meyskens, F.L., Jr., Baker, L.H., and Coltman, C.A., Jr., JAMA, 2009, vol. 301, pp. 39–51. https://doi.org/10.1001/jama.2008.864

    Article  CAS  PubMed  Google Scholar 

  98. Ip, C. and Ganther, H.E., Cancer Res., 1990, vol. 50, pp. 1206–1211.

    CAS  PubMed  Google Scholar 

  99. Weekley, C.M. and Harris, H.H., Chem. Soc. Rev., 2013, vol. 42, pp. 8870–8894. https://doi.org/10.1039/c3cs60272a

    Article  CAS  PubMed  Google Scholar 

  100. Medina, D., Thompson, H., Ganther, H., and Ip, C., Nutr. Cancer, 2001, vol. 40, pp. 12–17. https://doi.org/10.1207/S15327914NC401_5

    Article  CAS  PubMed  Google Scholar 

  101. Kumar, S., Bjornstedt, M., and Holmgren, A., Eur. J. Biochem., 1992, vol. 207, pp. 435–439.

    Article  CAS  Google Scholar 

  102. Bjornstedt, M., Kumar, S., and Holmgren, A., J. Biol. Chem., 1992, vol. 267, pp. 8030–8034.

    CAS  PubMed  Google Scholar 

  103. Gopalakrishna, R., Gundimeda, U., Zhou, S., Zung, K., Forell, K., and Holmgren, A., React. Oxyg. Species (Apex), 2016, vol. 2, pp. 272–289. https://doi.org/10.20455/ros.2016.851

    Article  Google Scholar 

  104. Burk, R.F. and Hill, K.E., Annu. Rev. Nutr., 1993, vol. 3, pp. 65–81. https://doi.org/10.1146/annurev.nu.13.070193.000433

    Article  Google Scholar 

  105. Ganther, H.E., Carcinogenesis, 1999, vol. 20, pp. 1657–1666.

    Article  CAS  Google Scholar 

  106. Diwakar, B.T., Korwar, A.M., Paulson, R.F., and Prabhu, K.S., Adv. Cancer Res., 2017, vol. 136, pp. 153–172. https://doi.org/10.1016/bs.acr.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bi, C.L., Wang, H., Wang, Y.J., Sun, J., Dong, J.S., Meng, X., and Li, J.J., Eur. J. Pharmacol., 2016, vol. 780, pp. 159–165.

    Article  CAS  Google Scholar 

  108. Liao, W., Yu, Z., Lin, Z., Lei, Z., Ning, Z., Regenstein, J.M., Yang, J., and Ren, J., Sci. Rep., 2015, vol. 5, 18629. https://doi.org/10.1038/srep18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, Y.M., Ibeanu, G., Wang, L.Y., Zhang, J.Z., Chang, Y., Dong, J.D., Li, P.A., and Jing, L., BMC Neurosci., 2017, vol. 18, 15. https://doi.org/10.1186/s12868-017-0337-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Takahashi, A., Masuda, A., Sun, M., Centonze, V.E., and Herman, B., Brain Res. Bull., 2004, vol. 62, pp. 497–504. https://doi.org/10.1016/j.brainresbull.2003.07.009

    Article  CAS  PubMed  Google Scholar 

  111. Spyrou, G., Bjornstedt, M., Kumar, S., and Holmgren, A., FEBS Lett., 1995, vol. 368, pp. 59–63.

    Article  CAS  Google Scholar 

  112. Christensen, M.J., Nartey, E.T., Hada, A.L., Legg, R.L., and Barzee, B.R., Nutr. Cancer, 2007, vol. 58, pp. 197–204. https://doi.org/10.1080/01635580701328701

    Article  CAS  PubMed  Google Scholar 

  113. Liu, M., Hu, C., Xu, Q., Chen, L., Ma, K., Xu, N., and Zhu H., Biosci. Rep., 2015, vol. 35, pii: e00256. https://doi.org/10.1042/BSR20150092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kensler, T.W., Wakabayashi, N., and Biswal, S., Annu. Rev. Pharmacol. Toxicol., 2007, vol. 47, pp. 89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046

    Article  CAS  PubMed  Google Scholar 

  115. Sakurai, T., Kanayama, M., Shibata, T., Itoh, K., Kobayashi, A., Yamamoto, M., and Uchida, K., Chem. Res. Toxicol., 2006, vol. 19, pp. 1196–1204. https://doi.org/10.1021/tx0601105

    Article  CAS  PubMed  Google Scholar 

  116. Youn, B.W., Fiala, E.S., and Sohn, O.S., Nutr. Cancer, 2001, vol. 40, pp. 28–33. https://doi.org/10.1207/S15327914NC401_7

    Article  CAS  PubMed  Google Scholar 

  117. Seo, Y.R., Kelley, M.R., and Smith, M.L., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 14 548–14 553. https://doi.org/10.1073/pnas.212319799

    Article  CAS  Google Scholar 

  118. Constantinescu-Aruxandei, D., Frincu, R.M., Capra, L., and Oancea, F., Nutrients, 2018, vol. 10, no. 10, pii: E1466. https://doi.org/10.3390/nu10101466

    Article  CAS  PubMed  Google Scholar 

  119. Fagan, S., Owens, R., Ward, P., Connolly, C., Doyle, S., and Murphy, R., Biol. Trace Elem. Res., 2015, vol. 166, pp. 245–259. https://doi.org/10.1007/s12011-015-0242-6

    Article  CAS  PubMed  Google Scholar 

  120. Gagandeep, K., Anu, K., and Sodhi, H.S., Food Biochem., 2018, vol. 42, e12467. https://doi.org/10.1111/jfbc.12467

    Article  CAS  Google Scholar 

  121. Maseko, T., Callahan, D.L., Dunshea, F.R., Doronila, A., Kolev, S.D., and Ng, K., Food Chem., 2013, vol. 141, pp. 3681–3687. https://doi.org/10.1016/j.foodchem.2013.06.027

    Article  CAS  PubMed  Google Scholar 

  122. Xu, L., Gong, C., Li, G., Wei, J., Wang, T., Meng, W., Shi, M., and Wang, Y., Mol. Med. Rep., 2018, vol. 17, no. 5, pp. 6847–6851. https://doi.org/10.3892/mmr.2018.8641

    Article  CAS  PubMed  Google Scholar 

  123. Santofimia-Castano, P., Izquierdo-Alvarez, A., Plaza-Davila, M., Martinez-Ruiz, A., Fernandez-Bermejo, M., Mateos-Rodriguez, J.M., Salido, G.M., and Gonzalez, A., J. Cell Biochem., 2018, vol. 119, no. 1, pp. 1122–1133. https://doi.org/10.1002/jcb.26280

    Article  CAS  PubMed  Google Scholar 

  124. Wang, L., Yang, Z., Fu, J., Yin, H., Xiong, K., Tan, Q., Jin, H., Li, J., Wang, T., Tang, W., Yin, J., Cai, G., Liu, M., Kehr, S., Becker, K., and Zeng, H., Free Radic. Biol. Med., 2012, vol. 52, no. 5, pp. 898–908. https://doi.org/10.1016/j.freeradbiomed.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  125. Diaz, M., Gonzalez, R., Plano, D., Palop, J.A., Sanmartin, C., and Encio, I., J. Cell Mol. Med., 2018, vol. 22, no. 1, 289–301. https://doi.org/10.1111/jcmm.13318

    Article  CAS  PubMed  Google Scholar 

  126. Rusetskaya, N.Yu., Strukturno-funktsionalnye zakonomernosti biologicheskogo deistviya khalkogenorganicheskikh soedinenii (Structure-Functional Features of Biological Effects of Organochalcogen Compounds). Doctoral dissertation, South Federal University, Rostov-on-Don, 2014.

  127. Rusetskaya, N.Yu., Sovr. Probl. Nauki i Obraz., 2014, vol. 2. URL: www.science-education.ru/116-12266.

  128. Rusetskaya, N.Yu., Borodulin, V.B., Sarattsev, A.V., and Borodulin, Ya.V., Fund.Issl., 2013, vol. 4, pp. 125–129. URL: http://www.fundamental-research.ru/ru/ article/view?id=31111.

    Google Scholar 

  129. Rusetskaya, N.Yu., Borodulin, V.B., Goroshinskaya, I.A., Martyanova, V.A., Borodulin, Ya.V., and Dimidov, A.P., Izvestiya Vuzov. S.-K. region.Estestvennye Nauki, 2013, vol. 2, pp. 52–56.

    Google Scholar 

  130. Borodulin, V.B., Rusetskaya, N.Yu., and Sarattsev, A.V., Antioksidantnaya aktivnost’ sera-, selen- i tellurorganicheskikh soedinenii (Antioxidant Activity of Sulfur-, Selenium-, and Telluroorganic Compounds) Saratov: Saratov Medical University, 2015.

  131. Rusetskaya, N.Yu., Sovr. probl. nauki i obraz., 2014, vol. 3, URL: http://www.science-education.ru/ru/ article/view?id=12752.

  132. Rodionova, T.N., Antipov, V.A., and Lazarev, V.G., Farmakologiya selenorganicheskogo preparata DAFS-25 i ego ispolzovanie v zhivotnovodstve i veterinarii (Pharmacology of the Organoselenium Compound DAPS-25 and Its Application in Veterinary), Saratov: ITs Nauka, 2010.

  133. Rusetskaya, N.Y. and Borodulin, V.B., Biochemistry (Moscow)Supplement Series B: Biomedical Chemistry, 2015, vol. 9, pp. 45–57.

    Google Scholar 

  134. Drevko, Ya.B., Sitnikova, T.S., Burov, A.M., Drevko, B.I., and Shchegolev, S.Yu., Biotekhnologiya, 2015, vol. 31, no. 6, pp. 65–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Rusetskaya.

Ethics declarations

All authors declare that they have no conflict of interest that requires disclosure in this article.

Additional information

Translated by A. Medvedev

   Abbreviations used: AP-1—Activator protein-1; ARE—Antioxidant-responsive element; ASK1—Apoptosis signal regulated kinase 1; BAA—biologically active additives; COX—Cyclooxygenase; Cul3—Cullin-3-containing ubiquitin ligase complex E3; DAPS-25—Diacetophenonylidene; DAMP—Damage-associated molecular pattern, DD—Death domen; GCL—Glutamate-cysteine ligase; GPX—Glutathione peroxidase; GR—Glutathione reductase; GST—Glutathione S-transferase; GRX1—Glutaredoxin 1; GLRXR—Glutaredoxin reductase; HMOX—Heme oxygenase 1; IL—Interleukin; Keap1—Kelch-like ECH-associated protein-1; LOX—Lipoxygenase; LPS—Lipopolysaccharides; MAPK—Mitogen activated protein kinase (MAP kinase); MCh ETC—Mitochondrial electron transport chain; MYD88—Myeloid differentiation factor; NF-κB—Nuclear factor-κB, NOS—NO-synthase, NOX—NADP-oxidase; NQO1—NAD(P)H quinone oxidoreductase 1; NP— Nanoparticles; Nrf2—Nuclear factor erythroid-2-related factor 2; NRX—Nucleoredoxin; PAMP—Pathogen-associated molecular pattern; ROS—reactive oxygen species; SOD—Superoxide dismutase; TLR—Toll-like receptor; TNF-α—Tumor necrosis factor-α; TNFR—Tumor necrosis factor receptor; Trnau1ap—tRNA-selenocysteine 1-associated protein; TRX—Thioredoxin, Thioredoxin; TRXR—Thioredoxin reductase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusetskaya, N.Y., Fedotov, I.V., Koftina, V.A. et al. Selenium Compounds in Redox Regulation of Inflammation and Apoptosis. Biochem. Moscow Suppl. Ser. B 13, 277–292 (2019). https://doi.org/10.1134/S1990750819040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750819040085

Keywords:

Navigation