Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Proteomics of Transcription Factors: Identification of a Pool of HL-60 Cell Line-Specific Regulatory Proteins

  • 23 Accesses

Abstract

HL-60 promyelocytic cells are a widely used as a model for studying induced granulocytic differentiation. Investigation of proteins of the nuclear fraction, particularly transcription factors, is necessary for a better understanding of molecular mechanisms of cell maturation. Mass spectrometry is a powerful tool for analyzing proteomes due to its high sensitivity, specificity and performance. In this study performed using the selected reaction monitoring (SRM) method, we have assessed the levels of RBPJ, STAT1, CEBPB, CASP3, VAV1, PRKDC, PARP1, and UBC9 nuclear proteins isolated using hypertonic buffer, detergents (sodium dodecyl sulfate (SDS), sodium deoxycholate (DOC) and cleavable detergent ProteaseMAX™) and using centrifugation in a sucrose density gradient. The minimum and maximum protein content was 1.13 ± 0.28 and 14.34 ± 1.63 fmol/μg of total protein for the transcription factor RBPJ and ubiquitin-protein ligase type I UBC9, respectively. According to the results of shotgun mass spectrometric analysis of nuclear fractions, 2356 proteins were identified, of which 106 proteins were annotated as transcription factors. 37 transcription factors were uniquely identified in the fraction obtained by centrifugation in a sucrose density gradient, while only 9 and 8 transcription factors were uniquely identified in the nuclear fractions obtained using hypertonic buffer and detergents, respectively. The transcription factors identified in the HL-60 cell line represent regulatory molecules; their directed profiling under the treatment of differentiation inducers, will shed light on the mechanism of granulocyte maturation.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Birnie, G.D., Br. J. Cancer., 1988, Suppl., vol. 9, pp. 41−45.

  2. 2

    Collins, S.J., Blood, 1987, vol. 70, pp. 1233–1244.

  3. 3

    Collins, S.J., Robertson, K.A., and Mueller, L., Mol. Cell. Biol., 1990, vol. 10, no. 5, pp. 2154–2163.

  4. 4

    Drexler, H.G., MacLeod, R.A., and Uphoff, C.C., Leuk. Res., 1995, vol. 19, no. 10, pp. 681–691.

  5. 5

    Bertagnolo, V., Brugnoli, F., Grassilli, S., Nika, E., and Capitani, S., Cell. Signal., 2012, vol. 24, no. 3, pp. 612–620. https://doi.org/10.1016/j.cellsig.2011.11.017

  6. 6

    Omura, T., Sakai, H., and Murakami, H., Eur. J. Biochem., 2002, vol. 269, no. 1, pp. 381–389.

  7. 7

    Lekstrom-Himes, J. and Xanthopoulos, K.G., J. Biol. Chem., 1998, vol. 273, no. 44, pp. 28 545–28 548

  8. 8

    Li, X., Li, C., Jin, J., Wang, J., Huang, J., Ma, Z., Huang, X., He, X., Zhou, Y., Xu, Y., Yu, M., Huang, S., Yan, X., Li, F., Pan, J., Wang, Y., Yu, Y., and Jin, J., EBioMedicine, 2018, vol. 38, pp. 47–56. https://doi.org/10.1016/j.ebiom.2018.11.025

  9. 9

    Spiekermann, K., Biethahn, S., Wilde, S., Hiddemann, W., and Alves, F., Eur. J. Haematol., 2001, vol. 67, no. 2, pp. 63–71.

  10. 10

    Geletu, M., Balkhi, M.Y., Peer Zada, A.A., Christopeit, M., Pulikkan, J.A., Trivedi, A.K., Tenen, D.G., and Behre, G., Blood, 2007, vol. 110, no. 9, pp. 3301–3309. https://doi.org/10.1182/blood-2007-01-071035

  11. 11

    Li, G.H., Fan, Y.Z., Liu, X.W., Zhang, B.F., Yin, D.D., He, F., Huang, S.Y., Kang, Z.J., Xu, H., Liu, Q., Wu, Y.L., Niu, X.L., Zhang, L., Liu, L., Hao, M.W., Han, H., and Liang, Y.M., Mol. Cell. Biochem., 2010, vol. 340, nos. 1–2, pp. 7–14. https://doi.org/10.1007/s11010-010-0394-9

  12. 12

    Hancock, R., J. Struct. Biol., 2004, vol. 146, no. 3, pp. 281–290. https://doi.org/10.1016/j.jsb.2003.12.008

  13. 13

    Simicevic, J., Schmid, A.W., Gilardoni, P.A., Zoller, B., Raghav, S.K., Krier, I., Gubelmann, C., Lisacek, F., Naef, F., Moniatte, M., and Deplancke, B., Nat. Methods, 2013, vol. 10, no. 6, pp. 570–576. https://doi.org/10.1038/nmeth.2441

  14. 14

    Herrmann, C., Avgousti, D.C., and Weitzman, M.D., Bio-Protocol., 2017, vol. 7, no. 6, e2175.

  15. 15

    Lin, Y., Lin, H., Liu, Z., Wang, K., and Yan, Y., J. Sep. Sci., 2014, vol. 37, no. 22, pp. 3321–3329. https://doi.org/10.1002/jssc.201400569

  16. 16

    Chang, Y.J., Gregorich, Z.R., Chen, A.J., Hwang, L., Guner, H., Yu, D., Zhang, J., and Ying, Ge.Y., Proteome Res., 2015, vol. 14, no. 3, pp. 1587–1599. https://doi.org/10.1021/pr5012679

  17. 17

    Kopylov, A.T., Ponomarenko, E.A., Ilgisonis, E.V., Pyatnitskiy, M.A., Lisitsa, A.V., Poverennaya, E.V., Kiseleva, O.I., Farafonova, T.E., Tikhonova, O.V., Zavialova, M.G., Novikova, S.E., Moshkovskii, S.A., Radko, S.P., Morukov, B.V., Grigoriev, A.I., Paik, Y.K., Salekdeh, G.H., Urbani, A., Zgoda, V.G., and Archakov, A.I., J. Proteome Res., 2018, vol. 18, no. 1, pp. 120–129. https://doi.org/10.1021/acs.jproteome.8b00391

  18. 18

    Wiśniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M., Nat. Methods, 2009, vol. 6, no. 5, pp. 359–362. https://doi.org/10.1038/nmeth.1322

  19. 19

    Moulder, R., Lönnberg, T., Elo, L.L., Filén, J.J., Rainio, E., Corthals, G., Oresic, M., Nyman, T.A., Aittokallio, T., and Lahesmaa, R., Mol. Cell. Proteomics, 2010, vol. 9, no. 9, pp. 1937–1953. https://doi.org/10.1074/mcp.M900483-MCP200

  20. 20

    Vakhrushev, I.V., Novikova, S.E., Tsvetkova, A.V., Pyatnitskiy, M.A., and Yarygin, K.N., Biomed. Khim., 2018, vol. 64, no. 3, pp. 233–240. https://doi.org/10.18097/PBMC20186403233

  21. 21

    Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk, N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov, A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S., Medvedev, A.E., Mezentsev, Y.V., Moshkovskii, S.A., Naryzhny, S.N., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2013, vol. 12, no. 1, pp. 123–134. https://doi.org/10.1021/pr300821n

  22. 22

    Novikova, S.E., Tikhonova, O.V., Kurbatov, L.K., Farafonova, T.E., Vakhrushev, I.V., and Zgoda, V.G., Eur. J. Mass Spectrom., 2017, vol. 23, no. 4, pp. 202–208. https://doi.org/10.1177/1469066717719848

  23. 23

    Shushkova, N.A., Vavilov, N.E., Novikova, S.E., Farafonova, T.E., Tikhonova, O.V., Liao, P.-C., and Zgoda, V.G., Biomed. Khim., 2018, vol. 64, no. 6, pp. 496–504. https://doi.org/10.18097/PBMC20186406496

  24. 24

    Sharrocks, A.D., Nat. Rev. Mol. Cell Biol., 2001, vol. 2, no. 11, pp. 827–837. https://doi.org/10.1038/35099076

  25. 25

    Wilson, N.K., Foster, S.D., Wang, X., Knezevic, K., Schütte, J., Kaimakis, P., Chilarska, P.M., Kinston, S., Ouwehand, W.H., Dzierzak, E., Pimanda, J.E., de Bruijn, M.F., and Göttgens, B., Cell Stem Cell., 2010, vol. 7, no. 4, pp. 532–544. https://doi.org/10.1016/j.stem.2010.07.016

  26. 26

    Sotoca, A.M., Prange, K.H., Reijnders, B., Mandoli, A., Nguyen, L.N., Stunnenberg, H.G., and Martens, J.H., Oncogene, 2016, vol. 35, no. 15, pp. 1965–1976. https://doi.org/10.1038/onc.2015.261

Download references

ACKNOWLEDGMENTS

Experiments were performed in the Center for Collective Use “Human Proteome” (Institute of Biomedical Chemistry, Moscow).

Funding

The study was financially supported by the Russian Science Foundation (project no. 17-75-10201).

Author information

Correspondence to S. E. Novikova.

Ethics declarations

This article does not contain any research involving humans or using animals as objects.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novikova, S.E., Vakhrushev, I.V., Tsvetkova, A.V. et al. Proteomics of Transcription Factors: Identification of a Pool of HL-60 Cell Line-Specific Regulatory Proteins. Biochem. Moscow Suppl. Ser. B 13, 329–340 (2019). https://doi.org/10.1134/S1990750819040061

Download citation

Keyword

  • s: nuclear proteome
  • selected reaction monitoring (SRM)
  • shotgun mass spectrometry
  • transcription factors
  • HL-60 cell line