Skip to main content

The Study of the Neuroprotective Effects of Carnosine in the Experimental Model of Focal Cerebral Ischemia/Reperfusion

Abstract

Oxidative stress is one of the key factors responsible for brain tissue damage in ischemia; this points to the use of antioxidants under these conditions. One of the promising antioxidants for the therapy of ischemic stroke is a natural dipeptide carnosine. In this study the neuroprotective effect of dietary carnosine administration has been investigated in an experimental model of focal cerebral ischemia/reperfusion in Wistar rats. Animals received carnosine with a diet at a daily dose of 150 mg/kg for 7 days before transient occlusion of the middle cerebral artery (MCA), performed for 60 min. At 24 h after the onset of ischemia the effect of carnosine administration on the area of the infarct size was evaluated in animals. In brain tissue of animals the content of malondialdehyde (MDA), protein carbonyls (PC), total antioxidant capacity (TAC), total activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione transferase (GT), the content of isoprostanes and cytokines were measured. Treatment with carnosine significantly reduced the infarct size, increased TAC, and decreased the levels of MDA and isoprostanes in the brain tissue. Thus carnosine consumed prophylactically with the diet for 7 days before the ischemia induced by MCA occlusion in rats exhibited the direct neuroprotective effect, maintained high antioxidant activity of the brain tissue, reduced the level of oxidative damage markers (MDA and isoprostanes) but had no effect on the activity of antioxidant enzyme systems and production of cytokines in the brain tissue.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. World Health Organization [Internet]. Global Health Estimates 2015: Deaths by Cause, Age, Sex, by Country and by Region, 2000−2015. Geneva, 2016 [cited : Jan 30, 2018]. Available from: http://www.who.int/healthinfo/ global_burden_disease/estimates/en/index1. html3.

  2. Warner, D.S., J. Exp. Biol., 2004, vol. 207, pp. 3221–3231. https://doi.org/10.1242/jeb.01022

    Article  CAS  PubMed  Google Scholar 

  3. McCann, S.K., Dusting, G.J., and Roulston, C.L., J. Neurosci. Res., 2008, vol. 86, pp. 2524–2534. https://doi.org/10.1002/jnr.21700

    Article  CAS  PubMed  Google Scholar 

  4. Singhal, A.B., Lo, E.H., Dalkara, T., et al., in Acute Ischemic Stroke, González R.G., Hirsch, J.A., Lev, M.H., Eds., Berlin-Heidelberg: Springer-Verlag, 2011, pp. 1−24.

    Google Scholar 

  5. Allen, C.L. and Bayraktutan, U., Int. J. Stroke, 2009, vol. 4, pp. 461–470. https://doi.org/10.1111/j.1747-4949.2009.00387.x

    Article  CAS  PubMed  Google Scholar 

  6. Majid, A., ISRN Neurol., 2014, vol. 2014, 515716. https://doi.org/10.1155/2014/515716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brahmbhatt, V., Oliveira, M., Briand, M., et al., J. Nutr. Biochem., 2013, vol. 24, pp. 104–111. https://doi.org/10.1016/j.jnutbio.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  8. Guiotto, A., Calderan, A., Ruzza, P., et al., Curr. Med. Chem., 2005, vol. 12, pp. 2293–2315. https://doi.org/10.2174/0929867054864796

    Article  CAS  PubMed  Google Scholar 

  9. Gil-Agustí, M., Esteve-Romero, J., and Carda-Broch, S., J. Chromatogr. A, 2008, vol. 1189, nos. 1–2, pp. 444–450. https://doi.org/10.1016/j.chroma.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  10. Boldyrev, A.A., Aldini, G., and Derave, W., Physiol. Rev., 2013, vol. 93, pp. 1803–1845. https://doi.org/10.1152/physrev.00039.2012

    Article  CAS  PubMed  Google Scholar 

  11. Hipkiss, A.R., Baye, E., and de Courten, B., Maturitas, 2016, vol. 93, pp. 28–33. https://doi.org/10.1016/j.maturitas.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Davis, C.K., Laud, P.J., Bahor, Z., Rajanikant, G.K., and Majid, A., J. Cereb. Blood Flow Metab., 2016, vol. 36, pp. 1686–1694. https://doi.org/10.1177/0271678X16658302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Devyatov, A.A., Fedorova, T.N., Stvolinsky, S.L., et al., Byul. Eksper. Biol. Med., 2017, vol. 163, pp. 195–198. https://doi.org/10.1007/s10517-017-3764-4

    Article  CAS  Google Scholar 

  14. Doll, D.N., Barr, T.L., and Simpkins, J.W., Aging Disease, 2014, vol. 5, pp. 294–306. https://doi.org/10.14336/AD.2014.0500294

    Article  PubMed  Google Scholar 

  15. Waisman, A., Hauptmann, J., and Regen, T., Acta Neuropathol., 2015, vol. 129, pp. 625–637. https://doi.org/10.1007/s00401-015-1402-7

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, X., Wang, H., Sun, G., et al., J. Neurosci., 2015, vol. 35, no. 32, pp. 11 281–11 291. https://doi.org/10.1523/JNEUROSCI.1685-15.2015

    Article  CAS  Google Scholar 

  17. Stvolinsky, S.L., Fedorova, T.N., Devyatov, A.A., et al., Korsakov Zhurn. Nevrol. Nevropatol., 2017, vol. 117, no. 12-2, pp. 60–64. https://doi.org/10.17116/jnevro201711712260-64

  18. Alexandrova, M. and Bochev, P., in Oxidative Stress and Neurodegenerative Disorders, Qureshi, G. and Parvez, S., Eds., Elsevier Science, 2007, pp. 313–368.

    Google Scholar 

  19. Boldyrev, A.A., Dobrotvorskaya, I.S., Stepano-va, M.S., et al., Free Rad. Biol. Med., 2011, vol. 51, suppl., S12.

    Article  Google Scholar 

  20. Park, H.S., Han, K.H., Shin, J.A., et al., J. Korean Neurosurg. Soc., 2014, vol. 55, pp. 125–130. https://doi.org/10.3340/jkns.2014.55.3.125

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Z.Y., Sun, B.L., Yang, M.F., et al., Cell Mol. Neurobiol., 2015, vol. 35, pp. 147–157. https://doi.org/10.1007/s10571-014-0106-1

    Article  CAS  PubMed  Google Scholar 

  22. Klebanov, G.I., Teselkin, Yu.O., Babenkova, I.V., et al., Biochem. Mol. Biol. Int., 1997, vol. 43, pp. 99–106. https://doi.org/10.1080/15216549700203861

    CAS  Article  PubMed  Google Scholar 

  23. Boldyrev, A.A., Stvolinsky, S.L., Ryasina, T.V., et al., Byul. Eksper. Biol. Med., 1994, vol. 117, pp. 200–202. https://doi.org/10.1007/BF02444145

    Article  Google Scholar 

  24. Boldyrev, A.A., Carnosine and Oxidative Stress in Cells and Tissues, New York: Nova Biomed., 2007.

    Google Scholar 

  25. Fleisher-Berkovich, S., Abramovitch-Dahan, C., Ben-Shabat, S., et al., Peptides, 2009, vol. 30, pp. 1306–1312. https://doi.org/10.1016/j.peptides.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  26. Tsai, S.J., Kuo, W.W., and Liu, W.H., J. Agric. Food Chem., 2010, vol. 58, pp. 11 510–11 516. https://doi.org/10.1021/jf103258p

    Article  CAS  Google Scholar 

  27. Hu, W.W. and Chen Z., ACS Chem. Neurosci., 2012, vol. 3, pp. 238−247. https://doi.org/10.1021/cn200126p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tripathi, T., Pandey, R., Raza, A., et al., in Biomedical Aspects of Histamine, Khardori, N., Khan, R.A., Tripathi, T., Eds., Dordrecht: Springer, 2010, pp. 421–436.

    Google Scholar 

  29. Kalogeris, T., Baines, C.P., Krenz, M., et al., in Comprehensive Physiology, Hoboken: John Wiley & Sons, Inc., 2016, pp. 113–170. https://doi.org/10.1002/cphy.c160006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Devyatov.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devyatov, A.A., Fedorova, T.N., Stvolinsky, S.L. et al. The Study of the Neuroprotective Effects of Carnosine in the Experimental Model of Focal Cerebral Ischemia/Reperfusion. Biochem. Moscow Suppl. Ser. B 13, 55–59 (2019). https://doi.org/10.1134/S1990750819010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750819010050

Keywords:

  • brain ischemia
  • oxidative stress
  • inflammation
  • neuroprotection
  • carnosine