Advertisement

Possible involvement of neuronal nicotinic acetylcholine receptors in compensatory brain mechanisms at early stages of Parkinson’s disease

  • E. V. Kryukova
  • I. V. Shelukhina
  • A. A. Kolacheva
  • A. Kh. Alieva
  • M. I. Shadrina
  • P. A. Slominsky
  • I. E. Kasheverov
  • Y. N. Utkin
  • M. V. Ugrumov
  • V. I. Tsetlin
Article
  • 17 Downloads

Abstract

A role of nicotinic acetylcholine receptors (nAChR) in the development of Parkinson’s disease (PD) has been investigated using two mouse models corresponding to the presymptomatic stage and the early symptomatic stage of PD. Quantitative radioligand analysis of nAChR in the striatum and substantia nigra (SN) was performed using the radioactive derivatives of epibatidine, α-conotoxin MII, and α-bungarotoxin. These are selective ligands for different nAChR subtypes. The number of ligand-binding sites changed differently depending on their location in the brain, the stage of the disease and the receptor subtype. In the striatum epibatidine binding decreased by 66% and 70% at the presymptomatic and early symptomatic stages, respectively, while in SN epibatidine binding demonstrated a significant (160%) increase at the presymptomatic stage. The α-conotoxin MII binding to striatal dopaminergic axonal terminals at the presymptomatic stage decreased by 20% and at the symptomatic stage it demonstrated a further decrease. Striatal α-bungarotoxin binding increased at the presymptomatic stage and decreased at the early symptomatic stage. In SN, the level of α-bungarotoxin binding decreased at the presymptomatic stage and remained constant at the symptomatic stage. A significant decrease in the expression of Chrna4 and Chrna6 genes encoding α4 and α6 nAChR subunits was observed in SN at the early symptomatic stage, while a 13-fold increase in expression of the Chrna7 gene encoding the α7 nAChR subunit was detected at the presymptomatic stage. The data obtained on the altered mRNA levels or functional cholinergic receptors suggest possible involvement of nAChR in compensatory mechanisms at early PD stages.

Keywords

nicotinic acetylcholine receptors dopaminergic neuron 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine striatum substantia nigra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samii, A., Nutt, J.G., and Ransom, B.R., Lancet, 2004, vol. 363, pp. 1783–1793.CrossRefGoogle Scholar
  2. 2.
    Quik, M., Bordia, T., Huang, L., and Perez, X., CNS Neurol. Disord. Drug Targets, 2011, vol. 10, pp. 651–658.CrossRefGoogle Scholar
  3. 3.
    Quik, M., Zhang, D., Perez, X.A., and Bordia, T., Pharmacol. Ther., 2014, vol. 144, pp. 50–59.CrossRefGoogle Scholar
  4. 4.
    Grady, S.R., Salminen, O., Laverty, D.C., Whiteaker, P., McIntosh, J.M., Collins, A.C., and Marks, M.J., Biochem. Pharmacol., 2007, vol. 74, pp. 1235–1246.CrossRefGoogle Scholar
  5. 5.
    Cachope, R., Mateo, Y., Mathur, B.N., Irving, J., Wang, H.L., Morales, M., Lovinger, D.M., and Cheer, J.F., Cell Rep., 2012, vol. 26, pp. 33–41.CrossRefGoogle Scholar
  6. 6.
    Wonnacott, S., Sidhpura, N., and Balfour, D.J., Curr. Opin. Pharmacol., 2005, vol. 5, pp. 53–59.CrossRefGoogle Scholar
  7. 7.
    Lindstrom, J.M., Ann. N.-Y. Acad. Sci., 2003, vol. 998, pp. 41–52.CrossRefGoogle Scholar
  8. 8.
    Riederer, P. and Wuketich, S., J. Neural. Transm., 1976, vol. 38, pp. 277–301.CrossRefGoogle Scholar
  9. 9.
    Bezard, E., Gross, C., and Brotchie, J., Trends Neurosci., 2003, vol. 26, pp. 215–221.CrossRefGoogle Scholar
  10. 10.
    Jakowec, M.W. and Petzinger, G.M., Comp. Med., 2004, vol. 54, pp. 497–513.Google Scholar
  11. 11.
    Ugrumov, M.V., Khaindrava, V.G., Kozina, E.A., Kucheryanu, V.G., Bocharov, E.V., Kryzhanovsky, G.N., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., Rayevsky, K.S., and Pronina, T.S., Neuroscience, 2011, vol. 181, pp. 175–188.CrossRefGoogle Scholar
  12. 12.
    Kozina, E.A., Khakimova, G.R., Khaindrava, V.G., Kucheryanu, V.G., Vorobyeva, N.E., Krasnov, A.N., Georgieva, S.G., Kerkerian–Le Goff, L., and Ugrumov, M.V., J. Neurol. Sci., 2014, vol. 340, pp. 198–207.CrossRefGoogle Scholar
  13. 13.
    Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.CrossRefGoogle Scholar
  14. 14.
    Surin, A.M., Kryukova, E.V., Strukov, A.S., Zhmak, M.N., Talka, R., Tuominen, R., Salminen, O., Khiroug, L.S., Kasheverov, I.E., and Tsetin, V.I., Bioorgan. Khim., 2012, vol. 38, pp. 214–222.Google Scholar
  15. 15.
    Kasheverov, I.E., Zhmak, M.N., Khruschov, A.Y., and Tsetlin, V.I., Mar. Drugs, 2011, vol. 9, pp. 1698–1714.CrossRefGoogle Scholar
  16. 16.
    Kolacheva, A.A., Kozina, E.A., Volina, E.V., and Ugrumov, M.V., Dokl. Biochem. Biophys., 2014, vol. 456, pp. 246–250.Google Scholar
  17. 17.
    Quik, M., Bordia, T., and O’Leary, K., Biochem. Pharmacol., 2007, vol. 74, pp. 1224–1234.CrossRefGoogle Scholar
  18. 18.
    Champtiaux, N., Han, Z.-Y., Bessis, A., Rossi, F.M., Zoli, M., Marubio, L., McIntosh, J.M., and Changeux, J.-P., J. Neurosci., 2002, vol. 22, pp. 1208–1217.Google Scholar
  19. 19.
    Salminen, O., Whiteaker, P., Grady, S.R., Collins, A.C., McIntosh, J.M., and Marks, M.J., Neuropharmacology, 2005, vol. 48, pp. 696–705.CrossRefGoogle Scholar
  20. 20.
    Zoli, M., Moretti, M., Zanardi, A., McIntosh, J.M., Clement, F., and Gotti, C., J. Neurosci., 2002, vol. 22, pp. 8785–8789.Google Scholar
  21. 21.
    Klink, R., de Kerchove d’Exaerde, A., Zoli, M., and Changeux, J.P., J. Neurosci., 2001, vol. 21, pp. 1452–1456.Google Scholar
  22. 22.
    Poisik, O.V., Shen, J., Jones, S., and Yakel, J.L., J. Physiol., 2008, vol. 586, pp. 1365–1378.Google Scholar
  23. 23.
    Kawamata, J., Suzuki, S., and Shimohama, S., Curr. Drug Targets, 2012, vol. 13, pp. 623–630.CrossRefGoogle Scholar
  24. 24.
    Suzuki, S., Kawamata, J., Matsushita, T., Matsumura, A., Hisahara, S., Takata, K., Kitamura, Y., Kem, W., and Shimohama, S., J. Neurosci. Res., 2013, vol. 91, pp. 462–471.CrossRefGoogle Scholar
  25. 25.
    Bordia, T., McGregor, M., Papke, R.L., Decker, M.W., McIntosh, J.M., and Quik, M., Exp. Neurol., 2015, vol. 263, pp. 277–284.CrossRefGoogle Scholar
  26. 26.
    Gao, H.M., Jiang, J., Wilson, B., Zhang, W., Hong, J.S., and Liu, B., J. Neurochem., 2002, vol. 81, pp. 1285–1297.CrossRefGoogle Scholar
  27. 27.
    Yoshikawa, H., Kurokawa, M., Ozaki, N., Nara, K., Atou, K., Takad, E., Kamochi, H., and Suzuki, N., Clin. Exp. Immunol., 2006, vol. 146, pp. 116–123.CrossRefGoogle Scholar
  28. 28.
    Hu, J., Zhu, C., Liu, Y., Wang, F., Huang, Z., Fan, W., and Wu, J., Neurosci. Lett., 2011, vol. 494, pp. 232–236.CrossRefGoogle Scholar
  29. 29.
    Ke, L., Eisenhour, C.M., Bencherif, M., and Lukas, R.J., J. Pharmacol. Exp. Ther., 1998, vol. 286, pp. 825–840.Google Scholar
  30. 30.
    Huang, L.Z. and Winzer-Serhan, U.H., Brain Res., 2006, vol. 1113, no. 1, pp. 94–109.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Kryukova
    • 1
  • I. V. Shelukhina
    • 1
  • A. A. Kolacheva
    • 2
  • A. Kh. Alieva
    • 3
  • M. I. Shadrina
    • 3
  • P. A. Slominsky
    • 3
  • I. E. Kasheverov
    • 1
  • Y. N. Utkin
    • 1
  • M. V. Ugrumov
    • 2
  • V. I. Tsetlin
    • 1
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Koltsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations