Advertisement

Fibroblast growth factors and pancreas organogenesis

  • D. A. Gnatenko
  • E. P. Kopantsev
  • E. D. Sverdlov
Article
  • 21 Downloads

Abstract

Fibroblast growth factors (FGFs) are growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we have summarized current information about the role of FGFs in pancreas organogenesis. The pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue and activation of various genes regulating particular stages thus determining specification of progenitor cells. Changes in the FGF/FGFR signaling pathway during this process result in incorrect activation of master genes, leading to different pathologies in pancreas development. Understanding the full picture about the role of FGFs in pancreas development will help better understanding of their role in other pathologies of the pancres, including carcinogenesis.

Keywords

growth factors pancreas master genes organogenesis pancreatic tumors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mastracci, T.L. and Sussel, L., Wiley Interdiscip. Rev. Dev. Biol., 2012, vol. 1, no. 5, pp. 609–628.CrossRefGoogle Scholar
  2. 2.
    Ackermann, A.M. and Gannon, M., J. Mol. Endocrinol., 2007, vol. 38, nos. 1–2, pp. 193–206.CrossRefGoogle Scholar
  3. 3.
    Slack, J.M., Development, 1995, vol. 121, no. 6, pp. 1569–1580.Google Scholar
  4. 4.
    Ahnfelt-Rønne, J., Ravassard, P., Pardanaud-Glavieux, C., Scharfmann, R., and Serup, P., Diabetes, 2010, vol. 59, no. 8, pp. 1948–1956. doi 10.2337/db09-1010CrossRefGoogle Scholar
  5. 5.
    Pan, F.C. and Brissova, M., Curr. Opin. Endocrinol. Diabetes Obes., 2014, vol. 21, no. 2, pp. 77–82.CrossRefGoogle Scholar
  6. 6.
    Best, M., Carroll, M., Hanley, N.A., and Piper Hanley, K., Mol. Cell Endocrinol., 2008, vol. 288, nos. 1–2, pp. 86–94.CrossRefGoogle Scholar
  7. 7.
    Murtaugh, L.C., Development, 2007, vol. 134, no. 3, pp. 427–438.CrossRefGoogle Scholar
  8. 8.
    Gnatenko, D.A., Kopantsev, E.P., and Sverdlov, E.D., Biomed. Khim., 2016, vol. 62, pp. 622–629. doi 10.18097/PBMC20166206622CrossRefGoogle Scholar
  9. 9.
    Herrera, P.L., Development, 2000, vol. 127, pp. 2317–2322.Google Scholar
  10. 10.
    Wang, J., Kilic, G., Aydin, M., Burke, Z., Oliver, G., and Sosa–Pineda, B., Dev. Biol., 2005, vol. 286, pp. 182–194.CrossRefGoogle Scholar
  11. 11.
    Bouwens, L. and Rooman, I., Physiol. Rev., 2005, vol. 85, pp. 1255–1270.CrossRefGoogle Scholar
  12. 12.
    Wu, H., MacFarlane, W.M., Tadayyon, M., Arch, J.R., James, R.F., and Docherty, K., Biochem. J., 1999, vol. 344, pp. 813–818.Google Scholar
  13. 13.
    Hald, J., Sprinkel, A.E., Ray, M., Serup, P., Wright, C., and Madsen, O.D., J. Histochem. Cytochem., 2008, vol. 56, pp. 587–595.CrossRefGoogle Scholar
  14. 14.
    Kondratyeva, L.G., Vinogradova, T.V., Chernov, I.P., and Sverdlov, E.D., Genetika, 2015, vol. 51, no. 11, pp. 1221–1233.Google Scholar
  15. 15.
    Dichmann, D.S., Miller, C.P., Jensen, J., Scott Heller, R., and Serup, P., Dev. Dyn., 2003, vol. 226, no. 4, pp. 663–674.CrossRefGoogle Scholar
  16. 16.
    Oliver-Krasinski, J.M. and Stoffers, D.A., Genes Dev., 2008, vol. 22, no. 15, pp. 1998–2021.CrossRefGoogle Scholar
  17. 17.
    Lodh, S., O’Hare, E.A., and Zaghloul, N.A., Birth Defects Res. C Embryo Today, 2014, vol. 102, no. 2, pp. 139–158.CrossRefGoogle Scholar
  18. 18.
    Inchovska, M., Ogneva, V., and Martinova, Y., Cell Prolif., 2006, vol. 39, no. 6, pp. 537–550.CrossRefGoogle Scholar
  19. 19.
    Powers, C.J., McLeskey, S.W., and Wellstein, A., Endocr. Relat. Cancer, 2000, vol. 7, no. 3, pp. 165–197.CrossRefGoogle Scholar
  20. 20.
    Okada-Ban, M., Thiery, J.P., and Jouanneau, J., Int. J. Biochem. Cell Biol., 2000, vol. 32, no. 3, pp. 263–267.CrossRefGoogle Scholar
  21. 21.
    Le Bras, S., Miralles, F., Basmaciogullari, A., Czernichow, P., and Scharfmann, R., Diabetes, 1998, vol. 47, no. 8, pp. 1236–1242.CrossRefGoogle Scholar
  22. 22.
    Ameri, J., Ståhlberg, A., Pedersen, J., Johansson, J.K., Johannesson, M.M., Artner, I., and Semb, H., Stem Cells, 2010, vol. 28, no. 1, pp. 45–56.Google Scholar
  23. 23.
    Talavera-Adame, D. and Dafoe, D.C., World J. Exp. Med., 2015, vol. 5, no. 2, pp. 40–49.CrossRefGoogle Scholar
  24. 24.
    Kumar, M., Jordan, N., Melton, D., and Grapin-Botton, A., Dev. Biol., 2003, vol. 259, no. 1, pp. 109–122.CrossRefGoogle Scholar
  25. 25.
    Kim, S.K. and Hebrok, M., Genes Dev., 2001, vol. 15, no. 2, pp. 111–127.CrossRefGoogle Scholar
  26. 26.
    Xu, X., Browning, V.L., and Odorico, J.S., Mech. Dev., 2011, vol. 128, nos. 7–10, pp. 412–427.CrossRefGoogle Scholar
  27. 27.
    Apelqvist, A., Ahlgren, U., and Edlund, H., Curr. Biol., 1997, vol. 7, no. 10, pp. 801–804.CrossRefGoogle Scholar
  28. 28.
    Fogarty, M.P., Emmenegger, B.A., Grasfeder, L.L., Oliver, T.G., and Wechsler-Reya, R.J., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 8, pp. 2973–2978.CrossRefGoogle Scholar
  29. 29.
    Hebrok, M., Kim, S.K., and Melton, D.A., Genes Dev., 1998, vol. 12, no. 11, pp. 1705–1713.CrossRefGoogle Scholar
  30. 30.
    Mfopou, J.K., Willems, E., Leyns, L., and Bouwens, L., Int. J. Dev. Biol., 2005, vol. 49, no. 8, pp. 915–922.CrossRefGoogle Scholar
  31. 31.
    Jaramillo, M., Mathew, S., Task, K., Barner, S., and Banerjee, I., PLoS One, 2014, vol. 9, no. 4, e94307.CrossRefGoogle Scholar
  32. 32.
    Johannesson, M., Ståhlberg, A., Ameri, J., Sand, F.W., Norrman, K., and Semb, H., PLoS One, 2009, vol. 4, no. 3, e4794.CrossRefGoogle Scholar
  33. 33.
    Bayha, E., Jørgensen, M.C., Serup, P., and Grapin- Botton, A., PLoS One, 2009, vol. 4, no. 6, e5845.CrossRefGoogle Scholar
  34. 34.
    Elghazi, L., Cras-Méneur, C., Czernichow, P., and Scharfmann, R., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 6, pp. 3884–3889.CrossRefGoogle Scholar
  35. 35.
    Shirasawa, S., Yoshie, S., Yokoyama, T., Tomotsune, D., Yue, F., and Sasaki, K., Stem Cells Dev., 2011, vol. 20, no. 6, pp. 1071–1078.CrossRefGoogle Scholar
  36. 36.
    Takizawa-Shirasawa, S., Yoshie, S., Yue, F., Mogi, A., Yokoyama, T., Tomotsune, D., and Sasaki, K., Cell Tissue Res., 2013, vol. 354, no. 3, pp. 751–759.CrossRefGoogle Scholar
  37. 37.
    Uzan, B., Figeac, F., Portha, B., and Movassat, J., PLoS One, 2009, vol. 4, no. 3, e4734.CrossRefGoogle Scholar
  38. 38.
    Kumar, S.S., Alarfaj, A.A., Munusamy, M.A., Singh, A.J., Peng, I.C., Priya, S.P., Hamat, R.A., and Higuchi, A., Int. J. Mol. Sci., 2014, vol. 15, no. 12, pp. 23418–23447.CrossRefGoogle Scholar
  39. 39.
    Delaspre, F., Massumi, M., Salido, M., Soria, B., Ravassard, P., Savatier, P., and Skoudy, A., PLoS One, 2013, vol. 8, no. 1, e54243.CrossRefGoogle Scholar
  40. 40.
    Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., and Melton, D.A., Cell, 2014, vol. 159, no. 2, pp. 428–439.CrossRefGoogle Scholar
  41. 41.
    Miralles, F., Czernichow, P., Ozaki, K., Itoh, N., and Scharfmann, R., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, vol. 11, pp. 6267–6272.CrossRefGoogle Scholar
  42. 42.
    Naye, F., Voz, M.L., Detry, N., Hammerschmidt, M., Peers, B., and Manfroid, I., Mol. Biol. Cell, 2012, vol. 23, no. 5, pp. 945–954.CrossRefGoogle Scholar
  43. 43.
    Shih, H.P., Wang, A., and Sander, M., Annu. Rev. Cell Dev. Biol., 2013, vol. 29, pp. 81–105.CrossRefGoogle Scholar
  44. 44.
    Ye, F., Duvillié, B., and Scharfmann, R., Diabetologia, 2005, vol. 48, no. 2, pp. 277–281.CrossRefGoogle Scholar
  45. 45.
    Hart, A., Papadopoulou, S., and Edlund, H., Dev. Dyn., 2003, vol. 228, no. 2, pp. 185–193.CrossRefGoogle Scholar
  46. 46.
    Kawaguchi, Y., J. Clin. Invest., 2013, vol. 123, no. 5, pp. 1881–1886.CrossRefGoogle Scholar
  47. 47.
    Seymour, P.A., Rev. Diabet. Stud., 2014, vol. 11, no. 1, pp. 51–83.CrossRefGoogle Scholar
  48. 48.
    Seymour, P.A., Freude, K.K., Tran, M.N., Mayes, E.E., Jensen, J., Kist, R., Scherer, G., and Sander, M., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 6, pp. 1865–1870.CrossRefGoogle Scholar
  49. 49.
    Wang, J., Rhee, S., Palaria, A., Tremblay, K.D., Dev. Dyn., 2015, vol. 244, no. 3, pp. 431–443.CrossRefGoogle Scholar
  50. 50.
    Murakami, S., Kan, M., McKeehan, W.L., and de Crombrugghe, B., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 3, pp. 1113–1118.CrossRefGoogle Scholar
  51. 51.
    Bhonde, R.R., Sheshadri, P., Sharma, S., and Kumar, A., Int. J. Biochem. Cell Biol., 2014, vol. 46, pp. 90–102.CrossRefGoogle Scholar
  52. 52.
    Miralles, F., Lamotte, L., Couton, D., and Joshi, R.L., Int. J. Dev. Biol., 2006, vol. 50, no. 1, pp. 17–26.CrossRefGoogle Scholar
  53. 53.
    Arnaud-Dabernat, S., Kritzik, M., Kayali, A.G., Zhang, Y.Q., Liu, G., Ungles, C., and Sarvetnick, N., Genes Dev., 2001, vol. 15, no. 2, pp. 111–127.CrossRefGoogle Scholar
  54. 54.
    Hosokawa, S., Furuyama, K., Horiguchi, M., Aoyama, Y., Tsuboi, K., Sakikubo, M., Goto, T., Hirata, K., Tanabe, W., Nakano, Y., Akiyama, H., Kageyama, R., Uemoto, S., and Kawaguchi, Y., Sci. Rep., 2015, vol. 17, no. 5, p. 8518.CrossRefGoogle Scholar
  55. 55.
    Habener, J.F., Kemp, D.M., and Thomas, M.K., Endocrinology, 2005, vol. 146, no. 3, pp. 1025–1034.CrossRefGoogle Scholar
  56. 56.
    Jensen, J., Dev. Dyn., 2004, vol. 229, no. 1, pp. 176–200.CrossRefGoogle Scholar
  57. 57.
    Ahnfelt–Rønne, J., Jørgensen, M.C., Klinck, R., Jensen, J.N., Füchtbauer, E.M., Deering, T., Ma-Donald, R.J., Wright, C.V., Madsen, O.D., and Serup, P., Development, 2012, vol. 139, no. 1, pp. 33–45.CrossRefGoogle Scholar
  58. 58.
    Rulifson, I.C., Karnik, S.K., Heiser, P.W., ten Berge, D., Chen, H., Gu, X., Taketo, M.M., Nusse, R., Hebrok, M., and Kim, S.K., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 15, pp. 6247–6252.CrossRefGoogle Scholar
  59. 59.
    Yamashita-Sugahara, Y., Matsumoto, M., Ohtaka, M., et al., Scientific Reports, 2016, vol. 6, p. 35908. doi 10.1038/srep35908CrossRefGoogle Scholar
  60. 60.
    Wang, Q.M., Zhang, Y., Yang, K.M., Zhou, H.Y., and Yang H.J., World J. Gastroenterol., 2006, vol. 12, no. 16, pp. 2615–2619.CrossRefGoogle Scholar
  61. 61.
    Papadopoulou, S. and Edlund, H., Diabetes, 2005, vol. 54, no. 10, pp. 2844–2851.CrossRefGoogle Scholar
  62. 62.
    Berg, T., Rountree, C.B., Lee, L., Estrada, J., Sala, F.G., Choe, A., Veltmaat, J.M., De Langhe, S., Lee, R., Tsukamoto, H., Crooks, G.M., Bellusci, S., and Wang, K.S., Hepatology, 2007, vol. 46, no. 4, pp. 1187–1197.CrossRefGoogle Scholar
  63. 63.
    Itoh, N., Cytokine Growth Factor Rev., 2016, vol. 28, pp. 63–69.CrossRefGoogle Scholar
  64. 64.
    Jennings, R.E., Berry, A.A., Strutt, J.P., Gerrard, D.T., and Hanley, N.A., Development, 2015, vol. 142, no. 18, pp. 3126–3137.CrossRefGoogle Scholar
  65. 65.
    Kong, X., Li, L., Li, Z., and Xie, K., Cytokine Growth Factor Rev., 2012, vol. 23, no. 6, pp. 343–356.CrossRefGoogle Scholar
  66. 66.
    Gittes, G.K., Dev. Biol., 2009, vol. 326, no. 1, pp. 4–35.CrossRefGoogle Scholar
  67. 67.
    Nunes, Q.M., Li, Y., Sun, C., Kinnunen, T.K., and Fernig, D.G., Peer J., 2016, vol. 4, e1535.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Gnatenko
    • 1
  • E. P. Kopantsev
    • 1
  • E. D. Sverdlov
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations