Abstract
Alternative splicing of telomerase catalytic subunit hTERT pre-mRNA (human Telomerase Reverse Transcriptase) regulates telomerase activity. Increased expression of non-active splice variant hTERT results in inhibition of telomerase. Apoptotic endonuclease EndoG is known to participate in hTERT alternative splicing. Expression of EndoG can be induced in response to DNA damages. The aim of this study was to determine the ability of a DNA-damaging compound, cisplatin, to induce EndoG and its influence on alternative splicing of hTERT and telomerase activity in human CD4+ Т lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated expression of the active full-length hTERT variant and upregulated its non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. Few cells survived and underwent malignant transformation. Transformed cells have increased telomerase activity and proliferative potential compare to initial CD4+ T cells. These cells have phenotype of T lymphoblastic leukemic cells and are able to form tumors and cause death in experimental mice.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Shay, J.W., Clin. Cancer Res., 2003, vol. 9, pp. 3521–3525.
Harley, C.B., Futcher, A.B., and Greider, C.W., Nature, 1990, vol. 345, pp. 458–460. doi 10.1038/345458?0
Wright, W.E., Pereira-Smith, O.M., and Shay, J.W., Mol. Cell Biol., 1989, vol. 9, pp. 3088–3092.
Hanahan, D. and Weinberg, R.A., Cell, 2000, vol. 100, pp. 57–70.
Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W., Science, 1994, vol. 266, pp. 2011–2015.
Marian, C.O., Wright, W.E., and Shay, J.W., Int. J. Cancer, 2010, vol. 127, pp. 321–331. doi 10.1002/ijc.25043
Marian, C.O., Cho, S.K., McEllin, B.M., Maher, E.A., Hatanpaa, K.J., Madden, C.J., Mickey, B.E., Wright, W.E., Shay, J.W., and Bachoo, R.M., Clin. Cancer Res., 2010, vol. 16, pp. 154–163. doi 10.1158/1078-0432.CCR-09-2850
Blackburn, E.H., Nature, 2000, vol. 408, pp. 53–56. doi 10.1038/35040500
Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle, S.D., Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q., Bacchetti, S., Haber, D.A., and Weinberg, R.A., Cell, 1997, vol. 90, pp. 785–795.
Saeboe-Larssen, S., Fossberg, E., and Gaudernack, G., BMC Mol. Biol., 2006, vol. 7, p. 26. doi 10.1186/1471-2199-7-26
Ulaner, G.A., Hu, J.F., Vu, T.H., Oruganti, H., Giudice, L.C., and Hoffman, A.R., Int. J. Cancer, 2000, vol. 85, pp. 330–335.
Ulaner, G.A., Hu, J.F., Vu, T.H., Giudice, L.C., and Hoffman, A.R., Cancer Res., 1998, vol. 58, pp. 4168–4172.
Listerman, I., Sun, J., Gazzaniga, F.S., Lukas, J.L., and Blackburn, E.H., Cancer Res., 2013, vol. 73, pp. 2817–2828. doi 10.1158/0008-5472.CAN-12-3082
Zhdanov, D.D., Vasina, D.A., Orlova, V.S., Gotovtseva, V.Y., Bibikova, M.V., Pokrovsky, V.S., Pokrovskaya, M.V., Aleksandrova, S.S., and Sokolov, N.N., Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2016, vol. 10, pp. 310–321.
Nagata, S., Nagase, H., Kawane, K., Mukae, N., and Fukuyama, H., Cell Death Diff., 2003, vol. 10, pp. 108–116. doi 10.1038/sj.cdd.4401161
Ruiz-Carrillo, A. and Renaud, J., EMBO J., 1987, vol. 6, pp. 401–407.
Yin, X., Apostolov, E.O., Shah, S.V., Wang, X., Bogdanov, K.V., Buzder, T., Stewart, A.G., and Basnakian, A.G., JASN, 2007, vol. 18, pp. 2544–2553. doi 10.1681/ASN.2006080896
Chan, F.K.-M., Moriwaki, K., and De Rosa, M.J., Methods Mol. Biol., 2013, vol. 979, pp. 65–70. doi 10.1007/978-1-62703-290-2_7
Basnakian, A.G., Apostolov, E.O., Yin, X., Abiri, S.O., Stewart, A.G., Singh, A.B., and Shah, S.V., Exp. Cell Res., 2006, vol. 312, pp. 4139–4149. doi 10.1016/j.yexcr.2006.09.012
Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.
Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G., and Robenek, H., Arter. Thromb. Vasc. Biol., 2004, vol. 24, pp. 1789–1795. doi 10.1161/01.ATV.0000140061.89096.2b
Kovalenko, N.A., Zhdanov, D.D., Bibikova, M.V., and Gotovtseva, V.Y., Biochemistry (Moscow) Supplement. Series B: Biomedical Chemistry, 2012, vol. 6, pp. 48–54.
O’Callaghan, N.J. and Fenech, M., Biological Procedures Online, 2011, vol. 13. p. 3. doi 10.1186/1480-9222-13-3
Cawthon, R.M., Nucleic Acids Research, 2002, vol. 30, e47.
Darzynkiewicz, Z., Galkowski, D., and Zhao, H., Methods, 2008, vol. 44, pp. 250–254. doi 10.1016/j.ymeth.2007.11.08
Pokrovsky, V.S., Treshalina, H.M., Lukasheva, E.V., Sedakova, L.A., Medentzev, A.G., Arinbasarova, A.Y., and Berezov, T.T., Anti-Cancer Drugs, 2013, vol. 24, pp. 846–851. doi 10.1097/CAD.0b013ee328362fbe2
Ruden, M. and Puri, N., Cancer Treat. Rev., 2013, vol. 39, pp. 444–456. doi 10.1016/j.ctrv.2012.06.007
Scovassi, A.I. and Torriglia, A., Eur. J. Histochem., 2003, vol. 47, pp. 185–194.
Effros, R.B. and Pawelec, G., Immunology Today, 1997, vol. 18, pp. 450–454.
Counter, C.M., Gupta, J., Harley, C.B., Leber, B., and Bacchetti, S., Blood, 1995, vol. 85, pp. 2315–2320.
Moro-García, M.A., Alonso-Arias, R., and López-Larrea, C., Cur. Genomics, 2012, vol. 13, pp. 589–602. doi 10.2174/138920212803759749
Hodes, R.J., Hathcock, K.S., and Weng, N., Nat. Rev. Immunol., 2002, vol. 2, pp. 699–706. doi 10.1038/nri890
Read, M.A., Wood, A.A., Harrison, J.R., Gowan, S.M., Kelland, L.R., Dosanjh, H.S., and Neidle, S., J. Med. Chem., 1999, vol. 42, pp. 4538–4546.
Zhou, Z., Du, Y., Zhang, L., and Dong, S., Biosens. Bioelectron., 2012, vol. 34, pp. 100–105. doi 10.1016/j.bios.2012.01.024
Martadinata, H., Heddi, B., Lim, K.W., and Phan, A.T., Biochemistry, 2011, vol. 50, pp. 6455–6461. doi 10.1021/bi200569f
Zhdanov, D.D., Fahmi, T., Wang, X., Apostolov, E.O., Sokolov, N.N., Javadov, S., and Basnakian, A.G., DNA and Cell Biology, 2015, vol. 34, pp. 316–326. doi 10.1089/dna.2014.2772
Sangle, N.A., Agarwal, A.M., Smock, K.J., Leavitt, M.O., Warnke, R., Bahler, D., and Perkins, S.L., App. Immunohistochem. Mol. Morphol., 2011, vol. 19, pp. 579–583. doi 10.1097/PAI.0b013e318221c672
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © D.D. Zhdanov, D.A. Vasina, E.V. Orlova, V.S. Orlova, V.S. Pokrovsky, M.V. Pokrovskaya, S.S. Aleksandrova, N.N. Sokolov, 2017, published in Biomeditsinskaya Khimiya.
Rights and permissions
About this article
Cite this article
Zhdanov, D.D., Vasina, D.A., Orlova, E.V. et al. Cisplatin-induced apoptotic endonuclease EndoG inhibits telomerase activity and causes malignant transformation of human CD4+ T lymphocytes. Biochem. Moscow Suppl. Ser. B 11, 251–264 (2017). https://doi.org/10.1134/S199075081703012X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S199075081703012X