Skip to main content
Log in

Redox-dependent mechanisms of regulation of breast epithelial cell proliferation

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Activation of free radical oxidation in various types of cells, including breast epithelial cells, can lead to damage to macromolecules, particularly proteins involved in regulation of proliferation and programmed cell death. The glutathione, glutaredoxin and thioredoxin systems play an essential role in maintaining intracellular redox homeostasis. In this regard, modulation of the redox status of cells by means of a blocker and a protector of SH-groups of proteins can be used as a model for studying the role of redox proteins and glutathione in regulation of cell proliferation during the development of various pathological processes. In this study the state of thioredoxin, glutaredoxin, glutathione systems and their role in the regulation of HBL-100 breast epithelial cell proliferation during modulation of the redox status by using N-ethylmaleimide (NEM) and 1,4-dithioerythritol (DTE) have been investigated. The modulation of the redox status of the breast epithelial cells by the blocker (NEM) and the protector (DTE) of thiol groups of proteins and peptides influenced the functional activity of glutathione-dependent enzymes, glutaredoxin, thioredoxin, and thioredoxin reductase by changing concentrations of GSH and GSSG. Modulation of the redox status of HBL-100 cells was accompanied by an increase in the number of cells in the S phase of the cell cycle and a decrease of cells in G0/G1 and G2/M phases as compared with the intact cell culture. The proposed method for evaluating the proliferative activity of cells during modulation of their redox state can be used in the development of new therapeutic approaches for treatment of diseases accompanied by the development of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Men’shchikova, E.B., Zenkov, N.K., Lankin, V.Z., Bondar’, I.A., and Trufakin, V.A., Okislitel’nyi stress: Patologicheskie sostoyaniya i zabolevaniya (Oxidative Stress: Pathological Conditions and Diseases), Novosibirsk ARTA, 2008.

    Google Scholar 

  2. Dubinina, E.E., Produkty metabolizma kisloroda v funktsional’noi aktivnosti kletok (zhizn’ i smert’, sozidanie i razrushenie). Fiziologicheskie i kliniko-biokhimicheskie aspekty (Products of Oxygen Metabolism in Functional Activity of Cells (Life and Death, Creation and Destruction). Physiological and Clinical-Biochemical Aspects), Saint Petersburg Meditsinskaya Pressa, 2006.

    Google Scholar 

  3. Kalinina, E.V., Chernov, N.N., Aleid, R., Novichkova, M.D., Saprin, A.N., and Berezov, T.T., Vestnik RAMS, 2010, no. 3, pp. 46–54.

    Google Scholar 

  4. Murphy, M.P., Holmgren, A., Larsson, N.G., Halliwell, B., Chang, C.J., Kalyanaraman, B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., Nyström, T., Belousov, V., Schumacker, P.T., and Winterbourn, C.C., Cell Metab., 2011, vol. 14, no. 4, pp. 361–366. doi 10.1016/j.cmet.2011.03.010

    Article  Google Scholar 

  5. Stepovaya, E.A., Sakhristova, E.V., Ryazantseva, N.V., Nosareva, O.L., Yakushina, V.D., Nosova, A.I., Gulaya, V.S., Stepanova, E.A., Chil’chigashev, R.I., and Novitsky, V.V., Biomed. Khim., 2016, vol. 62, pp. 64–68. doi 10.18097/PBMC20166201064

    Article  CAS  Google Scholar 

  6. Sakhristova, E.V., Stepovaya, E.A., Ryazantseva, N.V., Nosareva, O.L., Yakushina, V.D., Ivanov, V.V., and Novitsky, V.V., Byull. Eksper. Biol. Med., 2015, no. 9, pp. 351–354. doi 10.1007/s10517-016-3172-1

    Google Scholar 

  7. Kalinina, E.V., Chernov, N.N., and Saprin, A.N., Usp. Biol. Khimii, 2008, vol. 48, pp. 319–358.

    CAS  Google Scholar 

  8. Shan, W., Zhong, W., Zhao, R., and Oberley, T.D., Free Radic. Biol. Med., 2010, vol. 49, no. 12, pp. 2078–2087. doi 10.1016/j.freeradbiomed.2010.10.691

    Article  CAS  Google Scholar 

  9. Lu, J. and Holmgren, A., Free Radic. Biol. Med., 2014, vol. 66, pp. 75–87. doi 10.1016/j.freeradbiomed. 2013.07.036

    Article  CAS  Google Scholar 

  10. Ray, P.D., Huang, B.W., and Tsuji, Y., Cell Signal., 2012, vol. 24, no. 5, pp. 981–990. doi 10.1016/j.cellsig. 2012.01.008

    Article  CAS  Google Scholar 

  11. Wang, J., Boja, E.S., Tan, W., Tekle, E., Fales, H.M., English, S., Mieyal, J.J., and Chock, P.B., J. Biol. Chem., 2001, vol. 276, vol. 51, pp. 47763–47766. doi 10.1074/jbc.C100 415200

    Article  CAS  Google Scholar 

  12. Sengupta, R. and Holmgren, A., World J. Biol. Chem., 2014, vol. 5, no. 1, pp. 68–74. doi 10.4331/wjbc.v5.i1.68

    Article  Google Scholar 

  13. Li, L., Fath, M.A., Scarbrough, P.M., Watson, W.H., and Spitz, D.R., Redox Biol., 2015, vol. 4, pp. 127–135. doi 10.1016/j.redox.2014.12.001

    Article  CAS  Google Scholar 

  14. Stepovaya, E.A., Shakhristova, E.V., Ryazantseva, N.V., Nosareva, O.L., Chil’chigashev, R.I., and Egorova, M.Yu., Sibirskyi Onkologicheskyi Zhurnal, 2016, no. 4, pp. 50–55.

    Google Scholar 

  15. Sahaf, B., Heydari, K., and Herzenberg, L.A., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 7, pp. 4001–4005. doi 10.1073/pnas.2628032100

    Article  CAS  Google Scholar 

  16. Brunelli, L., Crow, J.P., and Beckman, J.S., Arch. Biochem. Biophys., 1995, vol. 316, no. 1, pp. 327–334. doi 10.1006/abbi.1995.1044

    Article  CAS  Google Scholar 

  17. Halliwell, B. and Whiteman, M., Br. J. Pharmacol., 2004, vol. 142, no. 2, pp. 231–255. doi 10.1038/sj.bjp.0705776

    Article  CAS  Google Scholar 

  18. Rahman, I., Kode, A., and Biswas, S.K., Nat. Protoc., 2006, vol. 6, pp. 3159–3165. doi 10.1038/nprot.2006.378

    Google Scholar 

  19. Worthington, D.J. and Rosemeyer, M.A., Eur. J. Biochem., 1976, vol. 60, no. 1, pp. 231–238.

    Article  Google Scholar 

  20. Alekseev, V.V., Meditsinskie laboratornye tekhnologii po klinicheskoi laboratornoi diagnostike v dvukh tomakh (Medical and Laboratory Technologies: A Handbook on Clinical and Laboratory Diagnistics in Two Volumes), Moscow GEOTAR-Media, 2013.

    Google Scholar 

  21. Tamura, T. and Stadtman, T.C., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 3, pp. 1006–1011.

    Article  CAS  Google Scholar 

  22. Bradford, M.M., Analyt. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  23. Zhang, Q., Sakamoto, K., and Wagner, K.U., Mol. Cell. Endocrinol., 2014, vol. 382, no. 1, pp. 583–592. doi 10.1016/j.mce.2013.03.016

    Article  CAS  Google Scholar 

  24. Hill, B.G. and Bhatnagar, A., J. Mol. Cell Cardiol., 2012, vol. 52, no. 3, pp. 559–567. doi 10.1016/j.yjmcc.2011.07.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shakhristova.

Additional information

Original Russian Text © E.A. Stepovaya, E.V. Shakhristova, O.L. Nosareva, E.V. Rudikov, M.Yu. Egorova, D.Yu. Egorova, V.V. Novitsky, 2017, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepovaya, E.A., Shakhristova, E.V., Nosareva, O.L. et al. Redox-dependent mechanisms of regulation of breast epithelial cell proliferation. Biochem. Moscow Suppl. Ser. B 11, 296–300 (2017). https://doi.org/10.1134/S199075081703009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081703009X

Keywords

Navigation