Skip to main content
Log in

Contamination of exosome preparations, isolated from biological fluids

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to attract attention of researchers to the problem of contamination of exosome preparations. Using a transmission electron microscope JEM-1400 (JEOL, Japan) we have examined exosome preparations, isolated according to the conventional scheme of sequential centrifugation from different biological fluids: blood plasma and urine of healthy persons and patients with oncologic diseases, bovine serum, and conditioned cell culture medium (MDCK, MDA-MB, and MCF-7 cells). All examined preparations (over 200) contained exosomes, which were identified by immuno-electron microscopy using antibodies to tetraspanins CD63 or CD9. Besides exosomes, all the studied preparations were characterized by the presence of contaminating structures: low electron density particles without limiting membrane and therefore could not be attributed to exosomes (“non-vesicles”). Two main types of the “non-vesicles” were found in the exosome preparations: particles of 20–40 nm in size, representing 10–40% of all structures in the exosome preparations; and particles of 40–100 nm in size (identical to exosomes by size). Morphology of the “non-vesicles” corresponded to that of intermediate and low density lipoproteins (20–40 nm), and very low density lipoproteins (40–100 nm), which were identical to exosomes in their size. The highest level of the contamination was detected in exosome preparations, isolated from blood samples. The results of our study indicate the need to control the composition of exosome preparations by electron microscopy and to take into consideration the presence of contaminating structures in the analysis of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanez-Mo, M., Siljander, P.R., Andreu, Z., Zavec, A.B., Borras, F.E., Buzas, E.I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colas, E., Cordeiro-da Silva, A., Fais, S., Falcon-Perez, J.M., Ghobrial, I.M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N.H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj-Iglic, V., Kramer-Albers, E.M., Laitinen, S., Lasser, C., Lener, T., Ligeti, E., Line, A., Lipps, G., Llorente, A., Lotvall, J., Mancek-Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte-’t Hoen, E.N., Nyman, T.A., O’Driscoll, L., Olivan, M., Oliveira, C., Pallinger, E., Del Portillo, H.A., Reventos, J., Rigau, M., Rohde, E., Sammar, M., Sanchez-Madrid, F., Santarem, N., Schallmoser, K., Ostenfeld, M.S., Stoorvogel, W., Stukelj, R., Van der Grein, S.G., Vasconcelos, M.H., Wauben, M.H., and De Wever, O., J. Extracell. Vesicles, 2015, vol. 4, 27066. doi 10.3402/jev.v4.2706627066

    Article  Google Scholar 

  2. Torrano, V., Royo, F., Peinado, H., Loizaga-Iriarte, A., Unda, M., Falcon-Perez, J.M., and Carracedo, A., Curr. Opin. Pharmacol., 2016, vol. 29, pp. 47–53. S1471-4892(16)30051-0 doi 10.1016/j.coph.2016.06.003

    Article  CAS  Google Scholar 

  3. Ferguson, S.W. and Nguyen, J., J. Control Release, 2016, vol. 228, pp. 179–190. S0168-3659(16)30100-6 doi 10.1016/j.jconrel.2016.02.037

    Article  CAS  Google Scholar 

  4. Ciardiello, C., Cavallini, L., Spinelli, C., Yang, J., Reis-Sobreiro, M., De Candia, P., Minciacchi, V.R., and Di Vizio, D., Int. J. Mol. Sci., 2016, vol. 17, no. 2, 175. ijms17020175 doi 10.3390/ijms17020175E175

    Article  Google Scholar 

  5. Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L., and Turbide, C., J. Biol. Chem., 1987, vol. 262, no. 19, pp. 9412–9420.

    CAS  Google Scholar 

  6. Hong, C.S., Funk, S., Muller, L., Boyiadzis, M., and Whiteside, T.L., J. Extracell. Vesicles, 2016, vol. 5, 29289. doi 10.3402/jev.v5.2928929289

    Article  Google Scholar 

  7. Nakai, W., Yoshida, T., Diez, D., Miyatake, Y., Nishibu, T., Imawaka, N., Naruse, K., Sadamura, Y., and Hanayama, R., Sci. Rep., 2016, vol. 6, 33935. doi 10.1038/srep33935srep33935

    Article  CAS  Google Scholar 

  8. Oliveira-Rodriguez, M., Lopez-Cobo, S., Reyburn, H.T., Costa-Garcia, A., Lopez-Martin, S., Yanez-Mo, M., Cernuda-Morollon, E., Paschen, A., Vales-Gomez, M., and Blanco-Lopez, M.C., J. Extracell. Vesicles, 2016, vol. 5, 31803. doi 10.3402/jev.v5.3180331803

    Article  Google Scholar 

  9. Grigor’eva, A.E., Tamkovich, S.N., Eremina, A.V., Tupikin, A.E., Kabilov, M.R., Chernykh, V.V., Vlassov, V.V., Laktionov, P.P., and Ryabchikova, E.I., Biomed. Khim., 2016, vol. 62. no. 1, pp. 99–106. doi 10.18097/PBMC20166201099

    Article  Google Scholar 

  10. Alvarez, M.L., Khosroheidari, M., Ravi, R., and DiStefano, J.K., Kidney Int., 2012, vol. 82, no. 9, pp. 1024–1032. doi 10.1038/ki.2012.256S0085-2538(15)55675-5

    Article  CAS  Google Scholar 

  11. Lotvall, J., Hill, A.F., Hochberg, F., Buzas, E.I., Di Vizio, D., Gardiner, C., Gho, Y.S., Kurochkin, I.V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M.H., Witwer, K.W., and Thery, C., J. Extracell. Vesicles, 2014, vol. 3, 26913. 26913 doi 10.3402/jev.v3.26913

    Article  Google Scholar 

  12. Shelke, G.V., Lasser, C., Gho, Y.S., and Lotvall, J., J. Extracell. Vesicles, 2014, vol. 3, 24783. doi 10.3402/jev.v3.2478324783

    Article  Google Scholar 

  13. Yuana, Y., Levels, J., Grootemaat, A., Sturk, A., and Nieuwland, R., J. Extracell. Vesicles, 2014, vol. 3, 23262. doi 10.3402/jev.v3.2326223262

    Article  Google Scholar 

  14. Sodar, B.W., Kittel, A., Paloczi, K., Vukman, K.V., Osteikoetxea, X., Szabo-Taylor, K., Nemeth, A., Sperlagh, B., Baranyai, T., Giricz, Z., Wiener, Z., Turiak, L., Drahos, L., Pallinger, E., Vekey, K., Ferdinandy, P., Falus, A., and Buzas, E.I., Sci. Rep., 2016, vol. 6, 24316. srep24316 doi 10.1038/srep24316

    Article  CAS  Google Scholar 

  15. Dashty, M., Motazacker, M.M., Levels, J., deVries, M., Mahmoudi, M., Peppelenbosch, M.P., and Rezaee, F., Thromb. Haemost., 2014, vol. 111, no. 3, pp. 518–530. doi 10.1160/TH13-02-017813-02-0178

    Article  CAS  Google Scholar 

  16. Monguio-Tortajada, M., Roura, S., Galvez-Monton, C., Pujal, J.M., Aran, G., Sanjurjo, L., Franquesa, M., Sarrias, M.R., Bayes-Genis, A., and Borras, F.E., Theranostics, 2017, vol. 7, no. 2, pp. 270–284. doi 10.7150/thno.16154thnov07p0270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Ryabchikova.

Additional information

Original Russian Text © A.E. Grigor’eva, N.S. Dyrkheeva, O.E. Bryzgunova, S.N. Tamkovich, B.P. Chelobanov, E.I. Ryabchikova, 2017, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’eva, A.E., Dyrkheeva, N.S., Bryzgunova, O.E. et al. Contamination of exosome preparations, isolated from biological fluids. Biochem. Moscow Suppl. Ser. B 11, 265–271 (2017). https://doi.org/10.1134/S1990750817030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750817030040

Keywords

Navigation