Advertisement

Determination of EGFR gene somatic mutations in tissues and plasma of patients with non-small cell lung cancer

  • O. I. BrovkinaEmail author
  • M. G. Gordiev
  • A. N. Toropovskiy
  • D. S. Khodyrev
  • R. F. Enikeev
  • O. A. Gusev
  • L. H. Shigapova
  • A. G. Nikitin
Article
  • 32 Downloads

Abstract

Activating mutations in the EGFR gene influence cell proliferation, angiogenesis, and increases metastatic ability of non-small cell lung cancer (NSCLC) cells; they have a significant impact on the choice of medical therapy of NSCLC. The use of targeted therapy with tyrosine kinase inhibitors requires performance of appropriate genetic tests in NSCLC patients. The aim of this study was to develop a real-time PCRbased diagnostic test-system for rapid and cost-effective analysis of EGFR mutations in paraffin blocks and plasma and to perform comparative estimation of diagnostic characteristics features of real-time wild type blocking PCR and digital PCR. The study included 156 patients with different degrees of lung adenocarcinoma differentiation. A simple and efficient real-time PCR-based method for detection of L858R activating mutation and del19 deletion in the EGFR gene in DNA isolated from paraffin blocks or blood has been developed. The test system for EGFR mutations has been validated using 411 samples of paraffin blocks. The proposed system demonstrated high efficiency for DNA testing from paraffin blocks: a concordance with results of testing by means a Therascreen® EGFR RGQ PCR Kit (Qiagen, Germany) was 100%. Applicability of this test system has been also demonstrated for detection of mutations in plasma.

Keywords

EGFR gene activating mutations real-time PCR non-small cell lung cancer plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsch, F., Varella-Garcia, M., Cappuzzo, F., et al., Ann. Oncol., 2007, vol. 18, pp. 752–760.CrossRefGoogle Scholar
  2. 2.
    Tomizawa, Y., Iijima, H., Sunaga, N., et al., Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., 2005, vol. 11, pp. 6816–6822.CrossRefGoogle Scholar
  3. 3.
    Emel’yanova, M.A., Amosenko, F.A., Sem’yanikhina, A.V., et al., Mol. Biologiya, 2015, vol. 49, pp. 617–627.Google Scholar
  4. 4.
    Shanazarov, N.A., Sabirov, A.Kh., and Sirotkina, S.M., 2009, Rossiskyi Bioterapevticheskyi Zhurnal, vol. 8, pp. 85–90.Google Scholar
  5. 5.
    Brewer, M.R., Yun, C.-H., Lai, D., et al., Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 604–638.Google Scholar
  6. 6.
    Kosaka, T., Yamaki, E., Mogi, A., and Kuwano, H., J. Biomed. Biotechnol., 2011, vol. 23, pp. 25–32.Google Scholar
  7. 7.
    Peng, L., Song, Z., and Jiao, S., OncoTargets Ther., 2015, vol. 8, pp. 905–910.Google Scholar
  8. 8.
    Jackman, D.M., Yeap, B.Y., Sequist, L.V., et al., Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., 2006, vol. 12, pp. 3908–3914.CrossRefGoogle Scholar
  9. 9.
    Lynch, T.J., Bell, D.W., Sordella, R., et al., N. Engl. J. Med., 2004, vol. 350, pp. 2129–2139.CrossRefGoogle Scholar
  10. 10.
    Gazdar, A.F., Oncogene, 2009, vol. 28, suppl. 1, pp. 24–31.CrossRefGoogle Scholar
  11. 11.
    Politi, K. and Lynch, T., Clin. Cancer Res., 2012, vol. 18, pp. 1490–1492.CrossRefGoogle Scholar
  12. 12.
    Pallis, A.G., Fennell, D.A., Szutowicz, E., et al., Br. J. Cancer, 2011, vol. 105, pp. 1–8.CrossRefGoogle Scholar
  13. 13.
    Ikeda, T., Nakamura, Y., Yamaguchi, H., et al., Clin. Lung Cancer, 2012, vol. 13, pp. 369–374.CrossRefGoogle Scholar
  14. 14.
    Jones, S., Chen, W., Parmigiani, G., et al., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 4283–4288.CrossRefGoogle Scholar
  15. 15.
    Bratman, S.V., Newman, A.M., Alizadeh, A.A., and Diehn, M., Expert Rev. Mol. Diagn., 2015, vol. 15, pp. 715–719.Google Scholar
  16. 16.
    Kapp, J.R., Diss, T., Spicer, J., et al., J. Clin. Pathol., 2014, vol. 68, pp. 111–118.CrossRefGoogle Scholar
  17. 17.
    Sharma, S.V., Bell, D.W., Settleman, J., and Haber, D.A., Nat. Rev. Cancer, 2007, vol. 7, pp. 169–181.CrossRefGoogle Scholar
  18. 18.
    Nagai, Y., Miyazawa, H., Huqun, et al., Cancer Res., 2005, vol. 65, pp. 7276–7282.CrossRefGoogle Scholar
  19. 19.
    Heitzer, E., Ulz, P., and Geigl, J.B., Clin. Chem., 2015, vol. 61, pp. 112–123.CrossRefGoogle Scholar
  20. 20.
    Emel’yanova, M.A., Mazurenko, N.N., Gagarin, I.M., et al., Vestnik Blokhin RONC RAMS, 2012, vol. 23, pp. 617–627.Google Scholar
  21. 21.
    Dominguez, P.L. and Kolodney, M.S., Oncogene, 2005, vol. 24, pp. 6830–6834.CrossRefGoogle Scholar
  22. 22.
    Hanahan, D. and Weinberg, R.A., Cell, 2000, vol. 100, pp. 57–70.CrossRefGoogle Scholar
  23. 23.
    Douillard, J.-Y., Shepherd, F.A., Hirsh, V., et al., J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., 2010, vol. 28, pp. 744–752.CrossRefGoogle Scholar
  24. 24.
    Iressa® [http://www.lsgeotar.ru/pharma_tn/3891.html].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. I. Brovkina
    • 1
    Email author
  • M. G. Gordiev
    • 2
  • A. N. Toropovskiy
    • 3
  • D. S. Khodyrev
    • 1
  • R. F. Enikeev
    • 2
  • O. A. Gusev
    • 4
    • 5
  • L. H. Shigapova
    • 4
  • A. G. Nikitin
    • 1
  1. 1.Federal Research and Clinical Center for Specialized Types of Medical Care and TechnologiesMoscowRussia
  2. 2.Tatarstan Cancer CenterKazanRussia
  3. 3.LLC “TestGene,”UlianovskRussia
  4. 4.Kazan Federal UniversityKazanRussia
  5. 5.RIKENYokohamaJapan

Personalised recommendations