Advertisement

The role of neutrophil myeloperoxidase in the development of inflammation induced by thermal skin burns

  • E. V. Mikhalchik
  • L. I. Budkevich
  • Yu. A. Piterskaya
  • L. Yu. Penkov
  • T. S. Astamirova
  • N. V. Smolina
  • T. V. Vakhrusheva
  • O. M. Panasenko
Article
  • 23 Downloads

Abstract

Luminol-dependent chemiluminescence (CL) of blood neutrophils stimulated with phorbol-12- myristate-13-acetate (PMA) and myeloperoxidase (MPO) activity of neutrophils and plasma have been investigated in children (n = 16) during the early period (1−7 days) after thermal skin burns exceeding 20% of total body surface. The CL level of stimulated neutrophils was higher in burn patients than in healthy children of the reference group (p lt; 0.01). Increased neutrophil MPO activity was found in 40% of patients, while increased plasma MPO activity was detected in 57% of patients. The albumin fraction isolated from plasma of burn patients increased the PMA-stimulated CL response of blood from healthy donors. These results suggest that the acute inflammatory response to the thermal burn causes neutrophil activation and MPO release into plasma. MPO-mediated modification of plasma proteins, particularly albumin, may stimulate neutrophil activation and provoke further inflammatory response of the body to the thermal injury.

Keywords

burns chemiluminescence neutrophils myeloperoxidase albumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Budkevich, L.I., Mikhalchik, E.V., Pen’kov, L.Yu., and Piterskaya, Yu.A., Detskaya Khirurgiya, 2009, no. 1, pp. 40–43.Google Scholar
  2. 2.
    Mikhalchik, E.V., Piterskaya, Yu.A., Budkevich, L.I., et al., Byull. Eksper. Biol. Med., 2009, vol. 148, pp. 524–528.CrossRefGoogle Scholar
  3. 3.
    Partrick, D.A., Moore, F.A., Moore, E.E., et al., Am. J. Surg., 1996, vol. 172, pp. 425–429.CrossRefGoogle Scholar
  4. 4.
    Klebanoff, S.J., J. Leukoc. Biol., 2005, vol. 77, pp. 598–625.CrossRefGoogle Scholar
  5. 5.
    Panasenko, O.M., Gorudko, I.V., and Sokolov, A.V., Usp. Biol. Khim., 2013, vol. 53, pp. 195–244.Google Scholar
  6. 6.
    Mikhalchik, E.V., Smolina, N.V., Astamirova, T.S., et al., Biophysics, 2013, vol. 58, pp. 681–689.CrossRefGoogle Scholar
  7. 7.
    Gorudko, I.V., Grigorieva, D.V., Shamova, E.V., et al., Free Radic. Biol. Med., 2014, vol. 68, pp. 326–334.CrossRefGoogle Scholar
  8. 8.
    Andrews, P.S. and Krinsky, N.J. in CRC Handbook of Methods for Oxygen Radical Research, Greenwald, R.A., Ed., Florida, 1985, pp. 297–302.Google Scholar
  9. 9.
    Brochner, A.C. and Toft, P., Scand. J. Trauma, Resuscitation and Emergency Medicine, 2009, vol. 17, p. 43. doi 10.1186/1757-7241-17-43CrossRefGoogle Scholar
  10. 10.
    Vladimirov, Yu.A. and Proskurnina, E.V., Usp. Biol. Khim., 2009, vol. 49, pp. 341–388.Google Scholar
  11. 11.
    Salavej, P., Spalteholz, H., and Arnhold, J., Free Radic. Biol. Med., 2006, vol. 40, pp. 516–525.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Mikhalchik
    • 1
  • L. I. Budkevich
    • 2
  • Yu. A. Piterskaya
    • 2
  • L. Yu. Penkov
    • 2
  • T. S. Astamirova
    • 2
  • N. V. Smolina
    • 1
  • T. V. Vakhrusheva
    • 1
  • O. M. Panasenko
    • 1
  1. 1.Federal Research and Clinical Center of Physical-Chemical MedicineMoscowRussia
  2. 2.Speransky Pediatric Clinical Hospital no. 9MoscowRussia

Personalised recommendations