Advertisement

Peptide phage display in biotechnology and biomedicine

  • G. A. Kuzmicheva
  • V. A. Belyavskaya
Article

Abstract

To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors, etc.). Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nanomaterials.

Keywords

phage display peptides bacteriophages random peptide phage libraries landscape libraries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hofschneider, P.H. and Preuss, A., J. Mol. Biol., 1963, vol. 7, pp. 450–451.CrossRefGoogle Scholar
  2. 2.
    Hoffmann-Berling, H., Duerwald, H., and Beulke, I., Z. Naturforsch. B., 1963, vol. 18, pp. 893–898.Google Scholar
  3. 3.
    Loeb, T., Science, 1960, vol. 131, pp. 932–933.CrossRefGoogle Scholar
  4. 4.
    Straus, S.K., Scott, W.R., Symmons, M.F., and Marvin, D.A., Eur. Biophys. J., 2008, vol. 37, pp. 521–527.CrossRefGoogle Scholar
  5. 5.
    Marvin, D.A., Symmons, M.F., and Straus, S.K., Prog. Biophys. Mol. Biol., 2014, vol. 114, pp. 80–122.CrossRefGoogle Scholar
  6. 6.
    Smith, G.P. and Petrenko, V.A., Chem. Rev., 1997, vol. 97, pp. 391–410.CrossRefGoogle Scholar
  7. 7.
    Phage Display: A Laboratory Manual, Barbas, C.F. III, Barton, D.R., and Silverman, G.J., Eds., Cold Spring Harbor Laboratory Press, 2001.Google Scholar
  8. 8.
    Rakonjac, J., Bennett, N.J., Spagnuolo, J., Gagic, D., and Russel, M., Curr. Issues Mol. Biol., 2011, vol. 13, pp. 51–76.Google Scholar
  9. 9.
    Smith, G.P., Science, 1985, vol. 228, pp. 1315–1317.CrossRefGoogle Scholar
  10. 10.
    Scott, J.K. and Smith, G.P., Science, 1990, vol. 249, pp. 386–390.CrossRefGoogle Scholar
  11. 11.
    McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J., Nature, 1990, vol. 348, pp. 552–554.CrossRefGoogle Scholar
  12. 12.
    Barbas, C.F. 3rd, Kang, A.S., Lerner, R.A., and Benkovic, S.J., Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 7978–7982.CrossRefGoogle Scholar
  13. 13.
    Kang, A.S., Jones, T.M., and Burton, D.R., Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 11120–11123.CrossRefGoogle Scholar
  14. 14.
    Kügler, J., Zantow, J., Meyer, T., and Hust, M., Viruses, 2013, vol. 5, pp. 2531–2545.CrossRefGoogle Scholar
  15. 15.
    Bratkovic, T., Cell Mol. Life Sci., 2010, vol. 67, no. 5, pp. 749–767.CrossRefGoogle Scholar
  16. 16.
    Gamkrelidze, M. and Dabrowska, K., Arch. Microbiol., 2014, vol. 196, pp. 473–479.CrossRefGoogle Scholar
  17. 17.
    Qin, L., Fokine, A., O’Donnell, E., Rao, V.B., and Rossmann, M.G., J. Mol. Biol., 2010, vol. 395, pp. 728–741.CrossRefGoogle Scholar
  18. 18.
    Shivachandra, S.B., Li, Q., Peachman, K.K., Matyas, G.R., Leppla, S.H., Alving, C.R., and Rao, M.R.B., Vaccine, 2007, vol. 25, pp. 1225–1235.CrossRefGoogle Scholar
  19. 19.
    Beghetto, E. and Gargano, N., Molecules, 2011, vol. 16, pp. 3089–3105.CrossRefGoogle Scholar
  20. 20.
    Guglietta, S., Beghetto, E., Spadoni, A., Buffolano, W., Del Porto, P., and Gargano, N., Microbes Infect., 2007, vol. 9, no. 2, pp. 127–133.CrossRefGoogle Scholar
  21. 21.
    Matthews, D.J. and Wells, J.A., Science, 1993, vol. 260, pp. 1113–1117.CrossRefGoogle Scholar
  22. 22.
    Felici, F., Luzzago, A., Folgori, A., and Cortese, R., Gene, 1993, vol. 128, pp. 21–27.CrossRefGoogle Scholar
  23. 23.
    Kuzmicheva, G.A., Kuvshinov, V.N., Razumov, I.A., Ivanisenko, V.A., Eroshkin, A.M., Mishin, V.P., Oreshkova, S.F., Loktev, V.B., Il’ichev, A.A., and Sandakhchiev, L.S., Dokl. Akad. Nauk, 1997, vol. 352, pp. 113–116.Google Scholar
  24. 24.
    Kuzmicheva, G.A., Kuvshinov, V.N., Razumov, I.A., Ivanisenko, V.A., Eroshkin, A.M., Mishin, V.P., Ushakova, T.A., Loktev, V.B., and Il’ichev, A.A., Mol. Genetika Mikrobiol. Virusol., 1997, vol. 4, pp. 25–29.Google Scholar
  25. 25.
    Rowley, M.J., Scealy, M., Whisstock, J.C., Jois, J.A., Wijeyewickrema, L.C., and Mackay, I.R., J. Immunol., 2000, vol. 164, pp. 3413–3419.CrossRefGoogle Scholar
  26. 26.
    Dieltjens, T., Willems, B., Coppens, S., Van Nieuwenhove, L., Humbert, M., Dietrich, U., Heyndrickx, L., Vanham, G., and Janssens, W.J., Virol. Methods, 2010, vol. 169, pp. 95–102.CrossRefGoogle Scholar
  27. 27.
    Tanaka, T., Kokuryu, Y., and Matsunaga, T., Appl. Environ. Microbiol., 2008, vol. 74, pp. 7600–7606.CrossRefGoogle Scholar
  28. 28.
    Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., and Belcher, A.M., Nature, 2000, vol. 405, pp. 665–668.CrossRefGoogle Scholar
  29. 29.
    Chamarthy, S.P., Jia, L., Kovacs, J.R., Anderson, K.R., Shen, H., Firestine, S.M., and Meng, W.S., Mol. Immunol., 2004, vol. 41, pp. 741–749.CrossRefGoogle Scholar
  30. 30.
    Kelly, K.A., Bardeesy, N., Anbazhagan, R., Gurumurthy, S., Berger, J., Alencar, H., Depinho, R.A., Mahmood, U., and Weissleder, R., PLoS Med., 2008, vol. 5, no. 4, e85.CrossRefGoogle Scholar
  31. 31.
    Petrenko, V.A., Smith, G.P., Gong, X., and Quinn, T., Protein Eng., 1996, vol. 9, pp. 797–801.CrossRefGoogle Scholar
  32. 32.
    Kuzmicheva, G.A., Jayanna, P.K., Sorokulova, I.B., and Petrenko, V.A., Protein Eng. Des. Sel., 2009, vol. 22, pp. 9–18.CrossRefGoogle Scholar
  33. 33.
    Kuzmicheva, G.A., Jayanna, P.K., Eroshkin, A.M., Grishina, M.A., Pereyaslavskaya, E.S., Potemkin, V.A., and Petrenko, V.A., Protein Eng. Des. Sel., 2009, vol. 22, pp. 631–639.CrossRefGoogle Scholar
  34. 34.
    Huang, S., Yang, H., Lakshmanan, R.S., Johnson, M.L., Wan, J., Chen, I.H., Wikle, H.C. 3rd, Petrenko, V.A., Barbaree, J.M., and Chin, B.A., Biosens. Bioelectron., 2009, vol. 24, pp. 1730–1736.CrossRefGoogle Scholar
  35. 35.
    Olsen, E.V., Sorokulova, I.B., Petrenko, V.A., Chen, I.H., Barbaree, J.M., and Vodyanoy, V.J., Biosens. Bioelectron., 2006, vol. 21, pp. 1434–1442.CrossRefGoogle Scholar
  36. 36.
    Kuzmicheva G.A., Eroshkin A.M., Potemkin V.A., Jayanna P.K., Petrenko V.A., Proc. Nanotechnol. Conference and Trade Show. NSTI-Nanotech 2008, 2008, vol. 2, pp. 446–448.Google Scholar
  37. 37.
    Gillespie, J.W., Gross, A.L., Puzyrev, A.T., Bedi, D., and Petrenko, V.A., Front Microbiol., 2015, vol. 6, p.628.CrossRefGoogle Scholar
  38. 38.
    Jayanna, P.K., Bedi, D., Deinnocentes, P., Bird, R.C., and Petrenko, V.A., Protein Eng. Des. Sel., 2010, vol. 23, pp. 423–430.CrossRefGoogle Scholar
  39. 39.
    Shadidi, M. and Sioud, M., FASEB J., 2003, vol. 17, pp. 256–268.Google Scholar
  40. 40.
    Kouzmitcheva, G.A., Petrenko, V.A., and Smith, G.P., Clin. Diagn. Lab. Immunol., 2001, vol. 8, pp. 150–160.Google Scholar
  41. 41.
    Manhani, M.N., Ribeiro, V.S., Cardoso, R., Ueira-Vieira, C., Goulart, L.R., and Costa-Cruz, J.M., Parasite Immunol., 2011, vol. 33, no. 6, pp. 322–329.CrossRefGoogle Scholar
  42. 42.
    Tumanova, O.Yu., Kuvshinov, V.N., Orlovskaya, I.A., Pronyaeva, T.R., Pokrovskii, A.G., Il’ichev, A.A., and Sandakhchiev, L.S., Mol. Biol. (Moscow), 2003, vol. 37, pp. 556–560.CrossRefGoogle Scholar
  43. 43.
    Tumanova, O.Yu., Kuvshinov, V.N., Il’ichev, A.A., Nekrasov, B.G., Ivanisenko, V.A., Kozlov, A.P., and Sandakhchiev, L.S., Mol. Biol. (Moscow), 2001, vol. 35, pp. 146–151.CrossRefGoogle Scholar
  44. 44.
    Gazarian, K., Gazarian, T., Betancourt, J.I., and Alonso Morales, R.A., Vet. Microbiol., 2011, vol. 154, pp. 29–36.CrossRefGoogle Scholar
  45. 45.
    Carnazza, S., Foti, C., Gioffre, G., Felici, F., and Guglielmino, S., Biosens. Bioelectron., 2008, vol. 23, pp. 1137–1144.CrossRefGoogle Scholar
  46. 46.
    Rao, S., Mohan, K.V., and Atreya, C.D., PLoS One, 2013, vol. 8, no. 2, e56081.CrossRefGoogle Scholar
  47. 47.
    Bishop-Hurley, S.L., Schmidt, F.J., Erwin, A.L., and Smith, A.L., Antimicrob. Agents Chemother., 2005, vol. 49, no. 7, pp. 2972–2978.CrossRefGoogle Scholar
  48. 48.
    Deutscher, S.L., Chem. Rev., 2010, vol. 110, pp. 3196–3211.CrossRefGoogle Scholar
  49. 49.
    Pasqualini, R. and Ruoslahti, E., Mol. Psychiatry, 1996, vol. 1, p.423.Google Scholar
  50. 50.
    Loi, M., Di Paolo, D., Soster, M., Brignole, C., Bartolini, A., Emionite, L., Sun, J., Becherini, P., Curnis, F., Petretto, A., Sani, M., Gori, A., Milanese, M., Gambini, C., Longhi, R., Cilli, M., Allen, T.M., Bussolino, F., Arap, W., Pasqualini, R., Corti, A., Ponzoni, M., Marchio, S., and Pastorino, F., J. Control Release, 2013, vol. 170, pp. 233–241.CrossRefGoogle Scholar
  51. 51.
    Fu, B., Zhang, Y., Long, W., Zhang, A., Zhang, Y., An, Y., Miao, F., Nie, F., Li, M., He, Y., Zhang, J., and Teng, G., Biotechnol. Lett., 2014, vol. 36, pp. 2291–2301. doi 10.1007/s10529-014-1608-0CrossRefGoogle Scholar
  52. 52.
    Valetti, S., Maione, F., Mura, S., Stella, B., Desmaële, D., Noiray, M., Vergnaud, J., Vauthier, C., Cattel, L., Giraudo, E., and Couvreur, P., J. Control Release, 2014, vol. 192, pp. 29–39.CrossRefGoogle Scholar
  53. 53.
    Zhang, Z.F., Shan, X., Wang, Y.X., Wang, W., Feng, S.Y., and Cui, Y.B., J. Cardiothorac. Surg., 2014, vol. 9, pp. 76–83.CrossRefGoogle Scholar
  54. 54.
    Ma, C., Yin, G., Yan, D., He, X., Zhang, L., Wei, Y., and Huang, Z., J. Pept. Sci., 2013, vol. 19, pp. 730–736.CrossRefGoogle Scholar
  55. 55.
    Pu, X., Ma, C., Yin, G., You, F., and Wei, Y., Biochem. Biophys. Res. Commun., 2014, vol. 443, pp. 858–863.CrossRefGoogle Scholar
  56. 56.
    Chang, D.K., Lin, C.T., Wu, C.H., and Wu, H.C., PLoS One, 2009, vol. 4, e4171, 1–11. doi 10.1371/journal. pone.0004171Google Scholar
  57. 57.
    Perea, S.E., Reyes, O., Baladron, I., Perera, Y., Farina, H., Gil, J., Rodriguez, A., Bacardi, D., Marcelo, J.L., Cosme, K., Cruz M., Valenzuela C., López-Saura P.A., Puchades Y., Serrano J.M., Mendoza O., Castellanos L., Sanchez A., Betancourt L., Besada V., Silva R., López E., Falcón V., Hernández I., Solares M., Santana A., Díaz A., Ramos T., López C., Ariosa J., González L.J., Garay H., Gómez D., Gómez R., Alonso D.F., Sigman H., Herrera L., and Acevedo B., Mol. Cell Biochem., 2008, vol. 316, pp. 163–167.CrossRefGoogle Scholar
  58. 58.
    Sundell, G.N. and Ivarsson, Y., Biomed. Res. Int., 2014, vol. 2014, pp. 176–172. doi 10.1155/2014/176172CrossRefGoogle Scholar
  59. 59.
    Dinkel, H., van Roey, K., and Sushama, M.S., Nucleic Acids Res., 2014, vol. 42, pp. D259–D266.CrossRefGoogle Scholar
  60. 60.
    Denisov, S.G., Beliavskaia, V.A., and Voevoda, M.I., Mol. Gen. Mikrobiol. Virusol., 2001, vol. 2, pp. 19–24.Google Scholar
  61. 61.
    Ivarsson, Y., Arnold, R., McLaughlin, M., Nim, S., Joshi, R., Ray, D., Liu, B., Teyra, J., Pawson, T., Moffat, J., Li, S.S., Sidhu, S.S., and Kim, P.M., Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 2542–2547. doi: 10.1073/pnas.1312296111CrossRefGoogle Scholar
  62. 62.
    Seker, U.O. and Demir, H.V., Molecules, 2011, vol. 16, pp. 1426–1451. doi 10.3390/molecules16021426CrossRefGoogle Scholar
  63. 63.
    Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chiang, Y.M., and Belcher, A.M., Science, 2006, vol. 312, pp. 885–888.CrossRefGoogle Scholar
  64. 64.
    Lower, B.H., Lins, R.D., Oestreicher, Z., Straatsma, T.P., Hochella, M.F., Jr., Shi, L., and Lower, S.K., Environ. Sci. Technol., 2008, vol. 42, pp. 3821–3827.CrossRefGoogle Scholar
  65. 65.
    Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B., and Belcher, A.M., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 6946–6951.CrossRefGoogle Scholar
  66. 66.
    Mao, C., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., and Belcher, A.M., Science, 2004, vol. 303, pp. 213–217.CrossRefGoogle Scholar
  67. 67.
    Sanghvi, A.B., Miller, K.P., Belcher, A.M., and Schmidt, C.E., Nat. Mater., 2005, vol. 4, pp. 496–502.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Research Center of Virology and Biotechnology VectorKoltsovo, Novosibirsk regionRussia
  2. 2.XBiotech USAAustinUSA

Personalised recommendations