Skip to main content
Log in

ADAR-mediated messenger RNA Editing: Analysis at the proteome level

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Post-transcriptional RNA editing by RNA-specific adenosine deaminases (ADAR) was discovered more than two decades ago. It provides additional regulation of animal and human transcriptome. In most cases, it occurs in nervous tissue where this results in conversion of adenosine to inosine at particular RNA sites. In the case of mRNA, an inosine residue is recognized by ribosome as guanine thus leading to amino acid substitutions during translation. Although such substitutions are shown to affect substantially functions of proteins (e.g. glutamate receptor) most of studies on RNA editing are mainly limited by analysis of nucleic acids even in the case of protein coding RNA transcripts. In this review, we propose the use of shotgun proteomics based on high resolution liquid chromatography and mass spectrometry for investigation of the effects of RNA editing at the protein level. Recently developed methods of big data processing allow combining the results of various omics techniques, being referred to as proteogenomics. The proposed proteogenomic approach for the analysis of RNA editing at the protein level is applicable for qualitative and quantitative analyses of protein edited sequences at the whole proteome level. Using this approach it will be possible to evaluate clinical importance of this phenomenon especially in the context of nervous system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crick, F., Nature, 1970, vol. 227, pp. 561–563.

    Article  CAS  Google Scholar 

  2. ENCODE Project Consortium, Nature, 2012, vol. 489, pp. 57–74. doi 10.1038/nature11247

    Article  Google Scholar 

  3. Saurabh, S., Vidyarthi, A.S., and Prasad, D., Planta, 2014, vol. 239, pp. 543–564. doi 10.1007/s00425-013-2019-5

    Article  CAS  Google Scholar 

  4. Ernst, C. and Morton, C.C., Front. Cell. Neurosci., 2013, vol. 7, p. 168. doi 10.3389/fncel.2013.00168

    Article  Google Scholar 

  5. Kapranov, P. and St Laurent, G., Front. Genet., 2012, vol. 3, p. 60. doi 10.3389/fgene.2012.00060

    CAS  Google Scholar 

  6. Matlin, A.J., Clark, F., and Smith, C.W.J., Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 386–398. doi 10.1038/nrm1645

    Article  CAS  Google Scholar 

  7. Blakeley, P., Siepen, J.A., Lawless, C., and Hubbard, S.J., Proteomics, 2010, vol. 10, pp. 1127–1140. doi 10.1002/pmic.200900445

    Article  CAS  Google Scholar 

  8. Blanc, V. and Davidson, N.O., J. Biol. Chem., 2003, vol. 278, pp. 1395–1398. doi 10.1074/jbc.R200024200

    Article  CAS  Google Scholar 

  9. Blanc, V. and Davidson, N.O., Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, vol. 2, pp. 594–602. doi 10.1002/wsbm.82

    Article  CAS  Google Scholar 

  10. Takenaka, M., Verbitskiy, D., Zehrmann, A., Härtel, B., Bayer-Császár, E., Glass, F., and Brennicke, A., Mitochondrion, 2014, vol. 19, pp. 191–197. doi 10.1016/j.mito.2014.04.005

    Article  CAS  Google Scholar 

  11. Shikanai, T., Biochim. Biophys. Acta, 2015, vol. 1847, pp. 779–785. doi 10.1016/j.bbabio.2014.12.010

    Article  CAS  Google Scholar 

  12. Alseth, I., Dalhus, B., and Bjørås, M., Curr. Opin. Genet. Dev., 2014, vol. 26, pp. 116–123. doi 10.1016/j.gde.2014.07.008

    Article  CAS  Google Scholar 

  13. Licht, K. and Jantsch, M.F., J. Cell Biol., 2016, vol. 213, pp. 15–22. doi 10.1083/jcb.201511041

    Article  CAS  Google Scholar 

  14. Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 11457–11461.

    Article  CAS  Google Scholar 

  15. Bass, B.L. and Weintrau, H.B., Cell, 1988, vol. 55, pp. 1089–1098.

    Article  CAS  Google Scholar 

  16. Chen, L., Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. E2741–E2747. doi 10.1073/pnas.1218884110

    Article  CAS  Google Scholar 

  17. Goodman, R.A., Macbeth, M.R., and Beal, P.A., Curr. Top. Microbiol. Immunol., 2012, vol. 353, pp. 1–33. doi 10.1007/82_2011_144

    CAS  Google Scholar 

  18. Keegan, L.P., Leroy, A., Sproul, D., and O’Connell, M.A., Genome Biol., 2004, vol. 5, p. 209. doi 10.1186/gb-2004-5-2-209

    Article  Google Scholar 

  19. Picardi, E., Manzari, C., Mastropasqua, F., Aiello, I., D’Erchia, A.M., and Pesole, G., Sci. Rep., 2015, vol. 5, p. 14941. doi 10.1038/srep14941

    Article  CAS  Google Scholar 

  20. Chen, C.X., Cho, D.S., Wang, Q., Lai, F., Carter, K.C., and Nishikura, K., RNA, 2000, vol. 6, pp. 755–767.

    Article  CAS  Google Scholar 

  21. Basilio, C., Wahba, A.J., Lengyel, P., Speyer, J.F., and Ochoa, S., Proc. Natl. Acad. Sci. USA, 1962, vol. 48, pp. 613–616.

    Article  CAS  Google Scholar 

  22. Tomaselli, S., Locatelli, F., and Gallo, A., Cell Tissue Res., 2014, vol. 356, pp. 527–532. doi 10.1007/s00441-014-1863-3

    Article  CAS  Google Scholar 

  23. Egebjerg, J. and Heinemann, S.F., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 755–759.

    Article  CAS  Google Scholar 

  24. Vissel, B., Royle, G.A., Christie, B.R., Schiffer, H.H., Ghetti, A., Tritto, T., Perez-Otano, I., Radcliffe, R.A., Seamans, J., Sejnowski, T., Wehner, J.M., Collins, A.C., O’Gorman, S., and Heinemann, S.F., Neuron, 2001, vol. 29, pp. 217–227.

    Article  CAS  Google Scholar 

  25. Alon, S., Mor, E., Vigneaul, F.T., Church, G.M., Locatelli, F., Galeano, F., Gallo, A., Shomron, N., and Eisenberg, E., Genome Res., 2012, vol. 22, pp. 1533–1540. doi 10.1101/gr.131573.111

    Article  CAS  Google Scholar 

  26. He, T., Wang, Q., Feng, G., Hu, Y., Wang, L., and Wang, Y., PLoS One, 2011, vol. 6, e18129. doi 10.1371/journal.pone.0018129

    Article  CAS  Google Scholar 

  27. Young, W., Cell Transplant., 2014, vol. 23, pp. 573–611. doi 10.3727/096368914X678427

    Article  Google Scholar 

  28. Niswender, C.M., Copeland, S.C., Herrick-Davis, K., Emeson, R.B., and Sanders-Bush, E., J. Biol. Chem., 1999, vol. 274, pp. 9472–9478.

    Article  CAS  Google Scholar 

  29. Orlandi, C., La Via, L., Bonini, D., Mora, C., Russo, I., Barbon, A., and Barlati, S., PLoS One, 2011, vol. 6, e25350. doi 10.1371/journal.pone.0025350

    Article  CAS  Google Scholar 

  30. Studer, R.A. and Robinson-Rechavi, M., Trends Genet., 2009, vol. 25, pp. 210–216. doi 10.1016/j.tig.2009.03.004

    Article  CAS  Google Scholar 

  31. Jin, Y., Tian, N., Cao, J., Liang, J., Yang, Z., and Lv, J., BMC Evol. Biol., 2007, vol. 7, p. 98. doi 10.1186/1471-2148-7-98

    Article  Google Scholar 

  32. Li, Q., Wang, Z., Lian, J., Schiøtt, M., Jin, L., Zhang, P., Zhang, Y., Nygaard, S., Peng, Z., Zhou, Y., Deng, Y., Zhang, W., Boomsma, J.J., and Zhang, G., Nat. Commun., 2014, vol. 5, p. 4943. doi 10.1038/ncomms5943

    Article  CAS  Google Scholar 

  33. Rieder, L.E., Savva, Y.A., Reyna, M.A., Chang, Y.-J., Dorsky, J.S., Rezaei, A., and Reenan, R.A., BMC Biol., 2015, vol. 13, p. 1. doi 10.1186/s12915-014-0111-3

    Article  Google Scholar 

  34. Garrett, S.C. and Rosenthal, J.J.C., Physiology (Bethesda), 2012, vol. 27, pp. 362–369. doi 10.1152/physiol.00029.2012

    Article  CAS  Google Scholar 

  35. Montgomery, J.C. and Macdonald, J.A., Am. J. Physiol., 1990, vol. 259, pp. R191–196.

    CAS  Google Scholar 

  36. Palladino, M.J., Keegan, L.P., O’Connell, M.A., and Reenan, R.A., Cell, 2000, vol. 102, pp. 437–449.

    Article  CAS  Google Scholar 

  37. Pachernegg, S., Münster, Y., Muth-Köhne, E., Fuhrmann, G., and Hollmann, M., Front. Cell. Neurosci., 2015, vol. 9, p. 69. doi 10.3389/fncel.2015.00069

    Article  Google Scholar 

  38. Whitney, N.P., Peng, H., Erdmann, N.B., Tian, C., Monaghan, D.T., and Zheng, J.C., FASEB J., 2008, vol. 22, pp. 2888–2900. doi 10.1096/fj.07-104661

    Article  CAS  Google Scholar 

  39. Behm, M. and Öhman, M., Trends Genet., 2016, vol. 32, pp. 165–175. doi 10.1016/j.tig.2015.12.005

    Article  CAS  Google Scholar 

  40. Ekdahl, Y., Farahani, H.S., Behm, M., Lagergren, J., and Öhman, M., Genome Res., 2012, vol. 22, pp. 1477–1487. doi 10.1101/gr.131912.111

    Article  CAS  Google Scholar 

  41. Wahlstedt, H., Daniel, C., Ensterö, M., and Ohman, M., Genome Res., 2009, vol. 19, pp. 978–986. doi 10.1101/gr.089409.108

    Article  CAS  Google Scholar 

  42. Liu, H., Ma, C.-P., Chen, Y.-T., Schuyler, S.C., Chang, K.-P., and Tan, B.C.-M., Cell Biosci., 2014, vol. 4, p. 44. doi 10.1186/2045-3701-4-44

    Article  Google Scholar 

  43. Werry, T.D., Loiacono, R., Sexton, P.M., and Christopoulos, A., Pharmacol. Ther., 2008, vol. 119, pp. 7–23. doi 10.1016/j.pharmthera.2008.03.012

    Article  CAS  Google Scholar 

  44. Öhlson, J., Pedersen, J.S., Haussler, D., and Ohman, M., RNA, 2007, vol. 13, pp. 698–703. doi 10.1261/rna.349107

    Article  Google Scholar 

  45. Rula, E.Y., Lagrange, A.H., Jacobs, M.M., Hu, N., Macdonald, R.L., and Emeson, R.B., J. Neurosci., 2008, vol. 28, pp. 6196–6201. doi 10.1523/JNEUROSCI. 0443-08.2008

    Article  CAS  Google Scholar 

  46. Higuchi, M., Maas, S., Single, F.N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., and Seeburg, P.H., Nature, 2000, vol. 406, pp. 78–81. doi 10.1038/35017558

    Article  CAS  Google Scholar 

  47. Hartner, J.C., Schmittwolf, C., Kispert, A., Müller, A.M., Higuchi, M., and Seeburg, P.H., J. Biol. Chem., 2004, vol. 279, 4894–4902. doi 10.1074/jbc.M311347200

    Article  CAS  Google Scholar 

  48. Maas, S., Kawahara, Y., Tamburro, K.M., and Nishikura, K., RNA Biol., 2006, vol. 3, pp. 1–9.

    Article  CAS  Google Scholar 

  49. Kwak, S., Hideyama, T., Yamashita, T., and Aizawa, H., Neuropathology, 2010, vol. 30, pp. 182–188. doi 10.1111/j.1440-1789.2009.01090.x

    Article  Google Scholar 

  50. Ramaswami, G. and Li, J.B., Methods, 2016. doi 10.1016/j.ymeth.2016.05.011

    Google Scholar 

  51. Sakurai, M., Yano, T., Kawabata, H., Ueda, H., and Suzuki, T., Nat. Chem. Biol., 2010, vol. 6, pp. 733–740. doi 10.1038/nchembio.434

    Article  CAS  Google Scholar 

  52. Ramaswami, G., Lin, W., Piskol, R., Tan, M.H., Davis, C., and Li, J.B., Nat. Methods, 2012, vol. 9, pp. 579–581. doi 10.1038/nmeth.1982

    Article  CAS  Google Scholar 

  53. Peng, Z., Cheng, Y., Tan, B.C.-M., Kang, L., Tian, Z., Zhu, Y., Zhang, W., Liang, Y., Hu, X., Tan, X., Guo, J., Dong, Z., Liang, Y., Bao, L., and Wang, J., Nat. Biotechnol., 2012, vol. 30, pp. 253–260. doi 10.1038/nbt.2122

    Article  CAS  Google Scholar 

  54. Ramaswami, G., Zhang, R., Piskol, R., Keegan, L.P., Deng, P., O’Connell, M.A., and Li, J.B., Nat. Methods, 2013, vol. 10, pp. 128–132. doi 10.1038/nmeth.2330

    Article  CAS  Google Scholar 

  55. Ramaswami, G. and Li, J.B., Nucleic Acids Res., 2014, vol. 42, pp. D109–113. doi 10.1093/nar/gkt996

    Article  CAS  Google Scholar 

  56. Kiran, A.M., O’Mahony, J.J., Sanjeev, K., and Baranov, P.V., Nucleic Acids Res., 2013, vol. 41, pp. D258–261. doi 10.1093/nar/gks961

    Article  CAS  Google Scholar 

  57. Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A.M., Lieberenz, M., Savitski, M.M., Ziegler E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J.-H., Bantscheff, M., Gerstmair, A., Faerber, F., and Kuster, B., Nature, 2014, vol. 509, pp. 582–587. doi 10.1038/nature13319

    Article  CAS  Google Scholar 

  58. Elias, J.E. and Gygi, S.P., Nat. Methods, 2007, vol. 4, pp. 207–214. doi 10.1038/nmeth1019

    Article  CAS  Google Scholar 

  59. Chick, J.M., Kolippakkam, D., Nusinow, D.P., Zhai, B., Rad, R., Huttlin, E.L., and Gygi, S.P., Nat. Biotechnol., 2015, vol. 33, pp. 743–749. doi 10.1038/nbt.3267

    Article  CAS  Google Scholar 

  60. Smith, L.M., Kelleher, N.L., Linial, M., Goodlett, D., Langridge-Smith, P., Ah Goo, Y., Safford, G., Bonilla, L., Kruppa, G., Zubarev, R., Rontree, J., Chamot-Rooke, J., Garavelli, J., Heck, A., Loo, J., Penque, D., Hornshaw, M., Hendrickson, C., Pasa-Tolic, L., Borchers, C., Chan, D., Young, N., Agar, J., Masselon, C., Gross, M., McLafferty, F., Tsybin, Y., Ge, Y., Sanders, I., Langridge, J., Whitelegge, J., and Marshall, A., Nat. Methods, 2013, vol. 10, pp. 186–187. doi 10.1038/nmeth.2369

    Article  CAS  Google Scholar 

  61. Lisitsa, A., Moshkovskii, S., Chernobrovkin, A., Ponomarenko, E., and Archakov, A., Expert Rev. Proteomics, 2014, vol. 11, pp. 121–129. doi 10.1586/14789450.2014.878652

    Article  CAS  Google Scholar 

  62. Ponomarenko, E.A., Kopylov, A.T., Lisitsa, A.V., Radko, S.P., Kiseleva, Y.Y., Kurbatov, L.K., Ptitsyn, K.G., Tikhonova, O. V, Moisa, A.A., Novikova, S.E., Poverennaya, E.V, Ilgisonis, E.V., Filimonov, A.D., Bogolubova, N.A., Averchuk, V.V., Karalkin, P.A., Vakhrushev, I.V., Yarygin, K.N., Moshkovskii, S.A., Zgoda, V.G., Sokolov, A.S., Mazur, A.M., Prokhortchouck, E.B., Skryabin, K.G., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Gorbachev, A.Y., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2014, vol. 13, pp. 183–190. doi 10.1021/pr400883x

    Article  CAS  Google Scholar 

  63. Nesvizhskii, A.I. and Aebersold, R., Mol. Cell. Proteomics, 2005, vol. 4, pp. 1419–1440. doi 10.1074/mcp.R500012-MCP200

    Article  CAS  Google Scholar 

  64. Ansong, C., Purvine, S.O., Adkins, J.N., Lipton, M.S., and Smith, R.D., Brief. Funct. Genomic. Proteomic., 2008, vol. 7, pp. 50–62. doi 10.1093/bfgp/eln010

    Article  CAS  Google Scholar 

  65. Wright, J.C., Mudge, J., Weisser, H., Barzine, M.P., Gonzalez, J.M., Brazma, A., Choudhary, J.S., and Harrow, J., Nat. Commun., 2016, vol. 7, p. 11778. doi 10.1038/ncomms11778

    Article  CAS  Google Scholar 

  66. Nesvizhskii, A.I., Nat. Methods, 2014, vol. 11, pp. 1114–1125. doi 10.1038/nmeth.3144

    Article  CAS  Google Scholar 

  67. Menon, R., Im, H., Zhang, E.Y., Wu, S.-L., Chen, R., Snyder, M., Hancock, W.S., and Omenn, G.S., J. Proteome Res., 2014, vol. 13, pp. 212–227. doi 10.1021/pr400773v

    Article  CAS  Google Scholar 

  68. Li, J., Su, Z., Ma, Z.-Q., Slebos, R.J.C., Halvey, P., Tabb, D.L., Liebler, D.C., Pao, W., and Zhang, B., Mol. Cell. Proteomics, 2011, vol. 10, M110.006536. doi 10.1074/mcp.M110.006536

  69. Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C.Y., Jia, M., De, T., Teague, J.W., Stratton, M.R., McDermott, U., and Campbell, P.J., Nucleic Acids Res., 2015, vol. 43, pp. D805–811. doi 10.1093/nar/gku1075

    Article  Google Scholar 

  70. Karpova, M.A., Karpov, D.S., Ivanov, M.V., Pyatnitskiy, M.A., Chernobrovkin, A.L., Lobas, A.A., Lisitsa, A.V., Archakov, A.I., Gorshkov, M.V., and Moshkovskii, S.A., J. Proteome Res., 2014, vol. 13, pp. 5551–5560. doi 10.1021/pr500531x

    Article  CAS  Google Scholar 

  71. Woo, S., Cha, S.W., Na, S., Guest, C., Liu, T., Smith, R.D., Rodland, K.D., Payne, S., and Bafna, V., Proteomics, 2014, vol. 14, pp. 2719–2730. doi 10.1002/pmic.201400206

    Article  CAS  Google Scholar 

  72. Ruggles, K.V., Tang, Z., Wang, X., Grover, H., Askenazi, M., Teubl, J., Cao, S., McLellan, M.D., Clauser, K.R., Tabb, D.L., Mertins, P., Slebos, R., Erdmann-Gilmore, P., Li, S., Gunawardena, H.P., Xie, L., Liu, T., Zhou, J.-Y., Sun, S., Hoadley, K.A., Perou, C.M., Chen, X., Davies, S.R., Maher, C.A., Kinsinger, C.R., Rodland, K.D., Zhang, H., Zhang, Z., Ding, L., Townsend, R.R., Rodriguez, H., Chan, D., Smith, R.D., Liebler, D.C., Carr, S.A., Payne, S., Ellis, M.J., and Fenyo, D., Mol. Cell. Proteomics, 2016, vol. 15, pp. 1060–1071. doi 10.1074/mcp.M115.056226

    Article  CAS  Google Scholar 

  73. Lobas, A.A., Karpov, D.S., Kopylov, A.T., Solovyeva, E.M., Ivanov, M.V, Ilina, I.I., Lazarev, V.N., Kuznetsova, K.G., Ilgisonis, E. V, Zgoda, V.G., Gorshkov, M.V., and Moshkovskii, S.A., Proteomics, 2016. doi 10.1002/pmic.201500349

    Google Scholar 

  74. Li, H.-D., Menon, R., Omenn, G.S., and Guan, Y., Proteomics, 2014, vol. 14, pp. 2709–2718. doi 10.1002/pmic.201400170

    Article  CAS  Google Scholar 

  75. Mertins, P., Mani, D.R., Ruggles, K.V., Gillette, M.A., Clauser, K.R., Wang, P., Wang, X., Qiao, J.W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J.T., Gatza, M.L., Wilkerson, M., Perou, C.M., Yellapantula, V., Huang, K., Lin, C., McLellan, M.D., Yan, P., Davies, S.R., Townsend, R.R., Skates, S.J., Wang, J., Zhang, B., Kinsinger, C.R., Mesri, M., Rodriguez, H., Ding, L., Paulovich, A.G., Fenyo, D., Ellis, M.J., Carr, S.A., NCI CPTAC, Nature, 2016, vol. 534, pp. 55–62. doi 10.1038/nature18003

    CAS  Google Scholar 

  76. Chernobrovkin, A.L., Kopylov, A.T., Zgoda, V.G., Moysa, A.A., Pyatnitskiy, M.A., Kuznetsova, K.G., Ilina, I.Y., Karpova, M.A., Karpov, D.S., Veselovsky, A.V., Ivanov, M.V., Gorshkov M.V., Archakov, A.I., and Moshkovskii, S.A., J. Proteomics, 2015, vol. 120, pp. 169–178. doi 10.1016/j.jprot.2015.03.003

    Article  CAS  Google Scholar 

  77. Sheynkman, G.M., Shortreed, M.R., Cesnik, A.J., and Smith, L.M., Annu. Rev. Anal. Chem. (Palo Alto. Calif), 2016, vol. 9, pp. 521–545. doi 10.1146/annurevanchem-071015-041722

    Article  Google Scholar 

  78. Huang, H., Tan, B.Z., Shen, Y., Tao, J., Jiang, F., Sung, Y.Y., Ng, C.K., Raida, M., Köhr, G., Higuchi, M., Fatemi-Shariatpanahi, H., Harden, B., Yue, D.T., and Soong, T.W., Neuron, 2012, vol. 73, pp. 304–316. doi 10.1016/j.neuron.2011.11.022

    Article  CAS  Google Scholar 

  79. Low, T.Y., van Heesch, S., van den Toorn, H., Giansanti, P., Cristobal, A., Toonen, P., Schafer, S., Hübner, N., van Breukelen, B., Mohammed, S., Cuppen, E., Heck, A.J.R., and Guryev, V., Cell Rep., 2013, vol. 5, pp. 1469–1478. doi 10.1016/j.celrep.2013.10.041

    Article  CAS  Google Scholar 

  80. Polyakova, A., Kuznetsova, K., and Moshkovskii, S., Expert Rev. Proteomics, 2015, vol. 12, pp. 533–541. doi 10.1586/14789450.2015.1070100

    Article  CAS  Google Scholar 

  81. Anderson, L. and Hunter, C.L., Mol. Cell. Proteomics, 2006, vol. 5, pp. 573–588. doi 10.1074/mcp.M500331-MCP200

    Article  CAS  Google Scholar 

  82. Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk, N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov, A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S., Medvedev, A.E., Mezentsev, Y.V., Moshkovskii, S.A., Naryzhny, S.N., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2013, vol. 12, pp. 123–134. doi 10.1021/pr300821n

    Article  CAS  Google Scholar 

  83. Chan, T.H.M., Lin, C.H., Qi, L., Fei, J., Li, Y., Yong, K.J., Liu, M., Song, Y., Chow, R.K.K., Ng, V.H.E., Yuan, Y.-F., Tenen, D.G., Guan, X.-Y., and Chen, L., Gut, 2014, vol. 63, pp. 832–843. doi 10.1136/gutjnl-2012-304037

    Article  CAS  Google Scholar 

  84. Melcher, T., Maas, S., Herb, A., Sprengel, R., Seeburg, P.H., and Higuchi, M., Nature, 1996, vol. 379, pp. 460–464. doi 10.1038/379460a0

    Article  CAS  Google Scholar 

  85. Jepson, J.E.C., Savva, Y.A., Jay, K.A., and Reenan, R.A., Nat. Methods, 2011, vol. 9, pp. 189–194. doi 10.1038/nmeth.1827

    Article  Google Scholar 

  86. Li, J.B., Levanon, E.Y., Yoon, J.-K., Aach, J., Xie, B., Leproust, E., Zhang, K., Gao, Y., and Church, G.M., Science, 2009, vol. 324, pp. 1210–1213. doi 10.1126/science. 1170995

    Article  CAS  Google Scholar 

  87. Bazak, L., Haviv, A., Barak, M., Jacob-Hirsch, J., Deng, P., Zhang, R., Isaacs, F.J., Rechavi, G., Li, J.B., Eisenberg, E., and Levanon, E.Y., Genome Res., 2014, vol. 24, pp. 365–376. doi 10.1101/gr.164749.113

    Article  CAS  Google Scholar 

  88. Streit, A.K., Matschke, L.A., Dolga, A.M., Rinné, S., and Decher, N., J. Biol. Chem., 2014, vol. 289, pp. 26762–26771. doi 10.1074/jbc.M113.545731

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Moshkovskii.

Additional information

Original Russian Text © A.A. Kliuchnikova, K.G. Kuznetsova, S.A. Moshkovskii, 2017, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kliuchnikova, A.A., Kuznetsova, K.G. & Moshkovskii, S.A. ADAR-mediated messenger RNA Editing: Analysis at the proteome level. Biochem. Moscow Suppl. Ser. B 11, 32–42 (2017). https://doi.org/10.1134/S199075081701005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081701005X

Keywords

Navigation