ADAR-mediated messenger RNA Editing: Analysis at the proteome level

  • A. A. Kliuchnikova
  • K. G. Kuznetsova
  • S. A. Moshkovskii


Post-transcriptional RNA editing by RNA-specific adenosine deaminases (ADAR) was discovered more than two decades ago. It provides additional regulation of animal and human transcriptome. In most cases, it occurs in nervous tissue where this results in conversion of adenosine to inosine at particular RNA sites. In the case of mRNA, an inosine residue is recognized by ribosome as guanine thus leading to amino acid substitutions during translation. Although such substitutions are shown to affect substantially functions of proteins (e.g. glutamate receptor) most of studies on RNA editing are mainly limited by analysis of nucleic acids even in the case of protein coding RNA transcripts. In this review, we propose the use of shotgun proteomics based on high resolution liquid chromatography and mass spectrometry for investigation of the effects of RNA editing at the protein level. Recently developed methods of big data processing allow combining the results of various omics techniques, being referred to as proteogenomics. The proposed proteogenomic approach for the analysis of RNA editing at the protein level is applicable for qualitative and quantitative analyses of protein edited sequences at the whole proteome level. Using this approach it will be possible to evaluate clinical importance of this phenomenon especially in the context of nervous system diseases.


RNA-specific adenosine deaminases (ADAR) RNA editing shotgun proteomics proteogenomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crick, F., Nature, 1970, vol. 227, pp. 561–563.CrossRefGoogle Scholar
  2. 2.
    ENCODE Project Consortium, Nature, 2012, vol. 489, pp. 57–74. doi 10.1038/nature11247CrossRefGoogle Scholar
  3. 3.
    Saurabh, S., Vidyarthi, A.S., and Prasad, D., Planta, 2014, vol. 239, pp. 543–564. doi 10.1007/s00425-013-2019-5CrossRefGoogle Scholar
  4. 4.
    Ernst, C. and Morton, C.C., Front. Cell. Neurosci., 2013, vol. 7, p. 168. doi 10.3389/fncel.2013.00168CrossRefGoogle Scholar
  5. 5.
    Kapranov, P. and St Laurent, G., Front. Genet., 2012, vol. 3, p. 60. doi 10.3389/fgene.2012.00060Google Scholar
  6. 6.
    Matlin, A.J., Clark, F., and Smith, C.W.J., Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 386–398. doi 10.1038/nrm1645CrossRefGoogle Scholar
  7. 7.
    Blakeley, P., Siepen, J.A., Lawless, C., and Hubbard, S.J., Proteomics, 2010, vol. 10, pp. 1127–1140. doi 10.1002/pmic.200900445CrossRefGoogle Scholar
  8. 8.
    Blanc, V. and Davidson, N.O., J. Biol. Chem., 2003, vol. 278, pp. 1395–1398. doi 10.1074/jbc.R200024200CrossRefGoogle Scholar
  9. 9.
    Blanc, V. and Davidson, N.O., Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, vol. 2, pp. 594–602. doi 10.1002/wsbm.82CrossRefGoogle Scholar
  10. 10.
    Takenaka, M., Verbitskiy, D., Zehrmann, A., Härtel, B., Bayer-Császár, E., Glass, F., and Brennicke, A., Mitochondrion, 2014, vol. 19, pp. 191–197. doi 10.1016/j.mito.2014.04.005CrossRefGoogle Scholar
  11. 11.
    Shikanai, T., Biochim. Biophys. Acta, 2015, vol. 1847, pp. 779–785. doi 10.1016/j.bbabio.2014.12.010CrossRefGoogle Scholar
  12. 12.
    Alseth, I., Dalhus, B., and Bjørås, M., Curr. Opin. Genet. Dev., 2014, vol. 26, pp. 116–123. doi 10.1016/j.gde.2014.07.008CrossRefGoogle Scholar
  13. 13.
    Licht, K. and Jantsch, M.F., J. Cell Biol., 2016, vol. 213, pp. 15–22. doi 10.1083/jcb.201511041CrossRefGoogle Scholar
  14. 14.
    Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 11457–11461.CrossRefGoogle Scholar
  15. 15.
    Bass, B.L. and Weintrau, H.B., Cell, 1988, vol. 55, pp. 1089–1098.CrossRefGoogle Scholar
  16. 16.
    Chen, L., Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. E2741–E2747. doi 10.1073/pnas.1218884110CrossRefGoogle Scholar
  17. 17.
    Goodman, R.A., Macbeth, M.R., and Beal, P.A., Curr. Top. Microbiol. Immunol., 2012, vol. 353, pp. 1–33. doi 10.1007/82_2011_144Google Scholar
  18. 18.
    Keegan, L.P., Leroy, A., Sproul, D., and O’Connell, M.A., Genome Biol., 2004, vol. 5, p. 209. doi 10.1186/gb-2004-5-2-209CrossRefGoogle Scholar
  19. 19.
    Picardi, E., Manzari, C., Mastropasqua, F., Aiello, I., D’Erchia, A.M., and Pesole, G., Sci. Rep., 2015, vol. 5, p. 14941. doi 10.1038/srep14941CrossRefGoogle Scholar
  20. 20.
    Chen, C.X., Cho, D.S., Wang, Q., Lai, F., Carter, K.C., and Nishikura, K., RNA, 2000, vol. 6, pp. 755–767.CrossRefGoogle Scholar
  21. 21.
    Basilio, C., Wahba, A.J., Lengyel, P., Speyer, J.F., and Ochoa, S., Proc. Natl. Acad. Sci. USA, 1962, vol. 48, pp. 613–616.CrossRefGoogle Scholar
  22. 22.
    Tomaselli, S., Locatelli, F., and Gallo, A., Cell Tissue Res., 2014, vol. 356, pp. 527–532. doi 10.1007/s00441-014-1863-3CrossRefGoogle Scholar
  23. 23.
    Egebjerg, J. and Heinemann, S.F., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 755–759.CrossRefGoogle Scholar
  24. 24.
    Vissel, B., Royle, G.A., Christie, B.R., Schiffer, H.H., Ghetti, A., Tritto, T., Perez-Otano, I., Radcliffe, R.A., Seamans, J., Sejnowski, T., Wehner, J.M., Collins, A.C., O’Gorman, S., and Heinemann, S.F., Neuron, 2001, vol. 29, pp. 217–227.CrossRefGoogle Scholar
  25. 25.
    Alon, S., Mor, E., Vigneaul, F.T., Church, G.M., Locatelli, F., Galeano, F., Gallo, A., Shomron, N., and Eisenberg, E., Genome Res., 2012, vol. 22, pp. 1533–1540. doi 10.1101/gr.131573.111CrossRefGoogle Scholar
  26. 26.
    He, T., Wang, Q., Feng, G., Hu, Y., Wang, L., and Wang, Y., PLoS One, 2011, vol. 6, e18129. doi 10.1371/journal.pone.0018129CrossRefGoogle Scholar
  27. 27.
    Young, W., Cell Transplant., 2014, vol. 23, pp. 573–611. doi 10.3727/096368914X678427CrossRefGoogle Scholar
  28. 28.
    Niswender, C.M., Copeland, S.C., Herrick-Davis, K., Emeson, R.B., and Sanders-Bush, E., J. Biol. Chem., 1999, vol. 274, pp. 9472–9478.CrossRefGoogle Scholar
  29. 29.
    Orlandi, C., La Via, L., Bonini, D., Mora, C., Russo, I., Barbon, A., and Barlati, S., PLoS One, 2011, vol. 6, e25350. doi 10.1371/journal.pone.0025350CrossRefGoogle Scholar
  30. 30.
    Studer, R.A. and Robinson-Rechavi, M., Trends Genet., 2009, vol. 25, pp. 210–216. doi 10.1016/j.tig.2009.03.004CrossRefGoogle Scholar
  31. 31.
    Jin, Y., Tian, N., Cao, J., Liang, J., Yang, Z., and Lv, J., BMC Evol. Biol., 2007, vol. 7, p. 98. doi 10.1186/1471-2148-7-98CrossRefGoogle Scholar
  32. 32.
    Li, Q., Wang, Z., Lian, J., Schiøtt, M., Jin, L., Zhang, P., Zhang, Y., Nygaard, S., Peng, Z., Zhou, Y., Deng, Y., Zhang, W., Boomsma, J.J., and Zhang, G., Nat. Commun., 2014, vol. 5, p. 4943. doi 10.1038/ncomms5943CrossRefGoogle Scholar
  33. 33.
    Rieder, L.E., Savva, Y.A., Reyna, M.A., Chang, Y.-J., Dorsky, J.S., Rezaei, A., and Reenan, R.A., BMC Biol., 2015, vol. 13, p. 1. doi 10.1186/s12915-014-0111-3CrossRefGoogle Scholar
  34. 34.
    Garrett, S.C. and Rosenthal, J.J.C., Physiology (Bethesda), 2012, vol. 27, pp. 362–369. doi 10.1152/physiol.00029.2012CrossRefGoogle Scholar
  35. 35.
    Montgomery, J.C. and Macdonald, J.A., Am. J. Physiol., 1990, vol. 259, pp. R191–196.Google Scholar
  36. 36.
    Palladino, M.J., Keegan, L.P., O’Connell, M.A., and Reenan, R.A., Cell, 2000, vol. 102, pp. 437–449.CrossRefGoogle Scholar
  37. 37.
    Pachernegg, S., Münster, Y., Muth-Köhne, E., Fuhrmann, G., and Hollmann, M., Front. Cell. Neurosci., 2015, vol. 9, p. 69. doi 10.3389/fncel.2015.00069CrossRefGoogle Scholar
  38. 38.
    Whitney, N.P., Peng, H., Erdmann, N.B., Tian, C., Monaghan, D.T., and Zheng, J.C., FASEB J., 2008, vol. 22, pp. 2888–2900. doi 10.1096/fj.07-104661CrossRefGoogle Scholar
  39. 39.
    Behm, M. and Öhman, M., Trends Genet., 2016, vol. 32, pp. 165–175. doi 10.1016/j.tig.2015.12.005CrossRefGoogle Scholar
  40. 40.
    Ekdahl, Y., Farahani, H.S., Behm, M., Lagergren, J., and Öhman, M., Genome Res., 2012, vol. 22, pp. 1477–1487. doi 10.1101/gr.131912.111CrossRefGoogle Scholar
  41. 41.
    Wahlstedt, H., Daniel, C., Ensterö, M., and Ohman, M., Genome Res., 2009, vol. 19, pp. 978–986. doi 10.1101/gr.089409.108CrossRefGoogle Scholar
  42. 42.
    Liu, H., Ma, C.-P., Chen, Y.-T., Schuyler, S.C., Chang, K.-P., and Tan, B.C.-M., Cell Biosci., 2014, vol. 4, p. 44. doi 10.1186/2045-3701-4-44CrossRefGoogle Scholar
  43. 43.
    Werry, T.D., Loiacono, R., Sexton, P.M., and Christopoulos, A., Pharmacol. Ther., 2008, vol. 119, pp. 7–23. doi 10.1016/j.pharmthera.2008.03.012CrossRefGoogle Scholar
  44. 44.
    Öhlson, J., Pedersen, J.S., Haussler, D., and Ohman, M., RNA, 2007, vol. 13, pp. 698–703. doi 10.1261/rna.349107CrossRefGoogle Scholar
  45. 45.
    Rula, E.Y., Lagrange, A.H., Jacobs, M.M., Hu, N., Macdonald, R.L., and Emeson, R.B., J. Neurosci., 2008, vol. 28, pp. 6196–6201. doi 10.1523/JNEUROSCI. 0443-08.2008CrossRefGoogle Scholar
  46. 46.
    Higuchi, M., Maas, S., Single, F.N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., and Seeburg, P.H., Nature, 2000, vol. 406, pp. 78–81. doi 10.1038/35017558CrossRefGoogle Scholar
  47. 47.
    Hartner, J.C., Schmittwolf, C., Kispert, A., Müller, A.M., Higuchi, M., and Seeburg, P.H., J. Biol. Chem., 2004, vol. 279, 4894–4902. doi 10.1074/jbc.M311347200CrossRefGoogle Scholar
  48. 48.
    Maas, S., Kawahara, Y., Tamburro, K.M., and Nishikura, K., RNA Biol., 2006, vol. 3, pp. 1–9.CrossRefGoogle Scholar
  49. 49.
    Kwak, S., Hideyama, T., Yamashita, T., and Aizawa, H., Neuropathology, 2010, vol. 30, pp. 182–188. doi 10.1111/j.1440-1789.2009.01090.xCrossRefGoogle Scholar
  50. 50.
    Ramaswami, G. and Li, J.B., Methods, 2016. doi 10.1016/j.ymeth.2016.05.011Google Scholar
  51. 51.
    Sakurai, M., Yano, T., Kawabata, H., Ueda, H., and Suzuki, T., Nat. Chem. Biol., 2010, vol. 6, pp. 733–740. doi 10.1038/nchembio.434CrossRefGoogle Scholar
  52. 52.
    Ramaswami, G., Lin, W., Piskol, R., Tan, M.H., Davis, C., and Li, J.B., Nat. Methods, 2012, vol. 9, pp. 579–581. doi 10.1038/nmeth.1982CrossRefGoogle Scholar
  53. 53.
    Peng, Z., Cheng, Y., Tan, B.C.-M., Kang, L., Tian, Z., Zhu, Y., Zhang, W., Liang, Y., Hu, X., Tan, X., Guo, J., Dong, Z., Liang, Y., Bao, L., and Wang, J., Nat. Biotechnol., 2012, vol. 30, pp. 253–260. doi 10.1038/nbt.2122CrossRefGoogle Scholar
  54. 54.
    Ramaswami, G., Zhang, R., Piskol, R., Keegan, L.P., Deng, P., O’Connell, M.A., and Li, J.B., Nat. Methods, 2013, vol. 10, pp. 128–132. doi 10.1038/nmeth.2330CrossRefGoogle Scholar
  55. 55.
    Ramaswami, G. and Li, J.B., Nucleic Acids Res., 2014, vol. 42, pp. D109–113. doi 10.1093/nar/gkt996CrossRefGoogle Scholar
  56. 56.
    Kiran, A.M., O’Mahony, J.J., Sanjeev, K., and Baranov, P.V., Nucleic Acids Res., 2013, vol. 41, pp. D258–261. doi 10.1093/nar/gks961CrossRefGoogle Scholar
  57. 57.
    Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A.M., Lieberenz, M., Savitski, M.M., Ziegler E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J.-H., Bantscheff, M., Gerstmair, A., Faerber, F., and Kuster, B., Nature, 2014, vol. 509, pp. 582–587. doi 10.1038/nature13319CrossRefGoogle Scholar
  58. 58.
    Elias, J.E. and Gygi, S.P., Nat. Methods, 2007, vol. 4, pp. 207–214. doi 10.1038/nmeth1019CrossRefGoogle Scholar
  59. 59.
    Chick, J.M., Kolippakkam, D., Nusinow, D.P., Zhai, B., Rad, R., Huttlin, E.L., and Gygi, S.P., Nat. Biotechnol., 2015, vol. 33, pp. 743–749. doi 10.1038/nbt.3267CrossRefGoogle Scholar
  60. 60.
    Smith, L.M., Kelleher, N.L., Linial, M., Goodlett, D., Langridge-Smith, P., Ah Goo, Y., Safford, G., Bonilla, L., Kruppa, G., Zubarev, R., Rontree, J., Chamot-Rooke, J., Garavelli, J., Heck, A., Loo, J., Penque, D., Hornshaw, M., Hendrickson, C., Pasa-Tolic, L., Borchers, C., Chan, D., Young, N., Agar, J., Masselon, C., Gross, M., McLafferty, F., Tsybin, Y., Ge, Y., Sanders, I., Langridge, J., Whitelegge, J., and Marshall, A., Nat. Methods, 2013, vol. 10, pp. 186–187. doi 10.1038/nmeth.2369CrossRefGoogle Scholar
  61. 61.
    Lisitsa, A., Moshkovskii, S., Chernobrovkin, A., Ponomarenko, E., and Archakov, A., Expert Rev. Proteomics, 2014, vol. 11, pp. 121–129. doi 10.1586/14789450.2014.878652CrossRefGoogle Scholar
  62. 62.
    Ponomarenko, E.A., Kopylov, A.T., Lisitsa, A.V., Radko, S.P., Kiseleva, Y.Y., Kurbatov, L.K., Ptitsyn, K.G., Tikhonova, O. V, Moisa, A.A., Novikova, S.E., Poverennaya, E.V, Ilgisonis, E.V., Filimonov, A.D., Bogolubova, N.A., Averchuk, V.V., Karalkin, P.A., Vakhrushev, I.V., Yarygin, K.N., Moshkovskii, S.A., Zgoda, V.G., Sokolov, A.S., Mazur, A.M., Prokhortchouck, E.B., Skryabin, K.G., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Gorbachev, A.Y., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2014, vol. 13, pp. 183–190. doi 10.1021/pr400883xCrossRefGoogle Scholar
  63. 63.
    Nesvizhskii, A.I. and Aebersold, R., Mol. Cell. Proteomics, 2005, vol. 4, pp. 1419–1440. doi 10.1074/mcp.R500012-MCP200CrossRefGoogle Scholar
  64. 64.
    Ansong, C., Purvine, S.O., Adkins, J.N., Lipton, M.S., and Smith, R.D., Brief. Funct. Genomic. Proteomic., 2008, vol. 7, pp. 50–62. doi 10.1093/bfgp/eln010CrossRefGoogle Scholar
  65. 65.
    Wright, J.C., Mudge, J., Weisser, H., Barzine, M.P., Gonzalez, J.M., Brazma, A., Choudhary, J.S., and Harrow, J., Nat. Commun., 2016, vol. 7, p. 11778. doi 10.1038/ncomms11778CrossRefGoogle Scholar
  66. 66.
    Nesvizhskii, A.I., Nat. Methods, 2014, vol. 11, pp. 1114–1125. doi 10.1038/nmeth.3144CrossRefGoogle Scholar
  67. 67.
    Menon, R., Im, H., Zhang, E.Y., Wu, S.-L., Chen, R., Snyder, M., Hancock, W.S., and Omenn, G.S., J. Proteome Res., 2014, vol. 13, pp. 212–227. doi 10.1021/pr400773vCrossRefGoogle Scholar
  68. 68.
    Li, J., Su, Z., Ma, Z.-Q., Slebos, R.J.C., Halvey, P., Tabb, D.L., Liebler, D.C., Pao, W., and Zhang, B., Mol. Cell. Proteomics, 2011, vol. 10, M110.006536. doi 10.1074/mcp.M110.006536Google Scholar
  69. 69.
    Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C.Y., Jia, M., De, T., Teague, J.W., Stratton, M.R., McDermott, U., and Campbell, P.J., Nucleic Acids Res., 2015, vol. 43, pp. D805–811. doi 10.1093/nar/gku1075CrossRefGoogle Scholar
  70. 70.
    Karpova, M.A., Karpov, D.S., Ivanov, M.V., Pyatnitskiy, M.A., Chernobrovkin, A.L., Lobas, A.A., Lisitsa, A.V., Archakov, A.I., Gorshkov, M.V., and Moshkovskii, S.A., J. Proteome Res., 2014, vol. 13, pp. 5551–5560. doi 10.1021/pr500531xCrossRefGoogle Scholar
  71. 71.
    Woo, S., Cha, S.W., Na, S., Guest, C., Liu, T., Smith, R.D., Rodland, K.D., Payne, S., and Bafna, V., Proteomics, 2014, vol. 14, pp. 2719–2730. doi 10.1002/pmic.201400206CrossRefGoogle Scholar
  72. 72.
    Ruggles, K.V., Tang, Z., Wang, X., Grover, H., Askenazi, M., Teubl, J., Cao, S., McLellan, M.D., Clauser, K.R., Tabb, D.L., Mertins, P., Slebos, R., Erdmann-Gilmore, P., Li, S., Gunawardena, H.P., Xie, L., Liu, T., Zhou, J.-Y., Sun, S., Hoadley, K.A., Perou, C.M., Chen, X., Davies, S.R., Maher, C.A., Kinsinger, C.R., Rodland, K.D., Zhang, H., Zhang, Z., Ding, L., Townsend, R.R., Rodriguez, H., Chan, D., Smith, R.D., Liebler, D.C., Carr, S.A., Payne, S., Ellis, M.J., and Fenyo, D., Mol. Cell. Proteomics, 2016, vol. 15, pp. 1060–1071. doi 10.1074/mcp.M115.056226CrossRefGoogle Scholar
  73. 73.
    Lobas, A.A., Karpov, D.S., Kopylov, A.T., Solovyeva, E.M., Ivanov, M.V, Ilina, I.I., Lazarev, V.N., Kuznetsova, K.G., Ilgisonis, E. V, Zgoda, V.G., Gorshkov, M.V., and Moshkovskii, S.A., Proteomics, 2016. doi 10.1002/pmic.201500349Google Scholar
  74. 74.
    Li, H.-D., Menon, R., Omenn, G.S., and Guan, Y., Proteomics, 2014, vol. 14, pp. 2709–2718. doi 10.1002/pmic.201400170CrossRefGoogle Scholar
  75. 75.
    Mertins, P., Mani, D.R., Ruggles, K.V., Gillette, M.A., Clauser, K.R., Wang, P., Wang, X., Qiao, J.W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J.T., Gatza, M.L., Wilkerson, M., Perou, C.M., Yellapantula, V., Huang, K., Lin, C., McLellan, M.D., Yan, P., Davies, S.R., Townsend, R.R., Skates, S.J., Wang, J., Zhang, B., Kinsinger, C.R., Mesri, M., Rodriguez, H., Ding, L., Paulovich, A.G., Fenyo, D., Ellis, M.J., Carr, S.A., NCI CPTAC, Nature, 2016, vol. 534, pp. 55–62. doi 10.1038/nature18003Google Scholar
  76. 76.
    Chernobrovkin, A.L., Kopylov, A.T., Zgoda, V.G., Moysa, A.A., Pyatnitskiy, M.A., Kuznetsova, K.G., Ilina, I.Y., Karpova, M.A., Karpov, D.S., Veselovsky, A.V., Ivanov, M.V., Gorshkov M.V., Archakov, A.I., and Moshkovskii, S.A., J. Proteomics, 2015, vol. 120, pp. 169–178. doi 10.1016/j.jprot.2015.03.003CrossRefGoogle Scholar
  77. 77.
    Sheynkman, G.M., Shortreed, M.R., Cesnik, A.J., and Smith, L.M., Annu. Rev. Anal. Chem. (Palo Alto. Calif), 2016, vol. 9, pp. 521–545. doi 10.1146/annurevanchem-071015-041722CrossRefGoogle Scholar
  78. 78.
    Huang, H., Tan, B.Z., Shen, Y., Tao, J., Jiang, F., Sung, Y.Y., Ng, C.K., Raida, M., Köhr, G., Higuchi, M., Fatemi-Shariatpanahi, H., Harden, B., Yue, D.T., and Soong, T.W., Neuron, 2012, vol. 73, pp. 304–316. doi 10.1016/j.neuron.2011.11.022CrossRefGoogle Scholar
  79. 79.
    Low, T.Y., van Heesch, S., van den Toorn, H., Giansanti, P., Cristobal, A., Toonen, P., Schafer, S., Hübner, N., van Breukelen, B., Mohammed, S., Cuppen, E., Heck, A.J.R., and Guryev, V., Cell Rep., 2013, vol. 5, pp. 1469–1478. doi 10.1016/j.celrep.2013.10.041CrossRefGoogle Scholar
  80. 80.
    Polyakova, A., Kuznetsova, K., and Moshkovskii, S., Expert Rev. Proteomics, 2015, vol. 12, pp. 533–541. doi 10.1586/14789450.2015.1070100CrossRefGoogle Scholar
  81. 81.
    Anderson, L. and Hunter, C.L., Mol. Cell. Proteomics, 2006, vol. 5, pp. 573–588. doi 10.1074/mcp.M500331-MCP200CrossRefGoogle Scholar
  82. 82.
    Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk, N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov, A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S., Medvedev, A.E., Mezentsev, Y.V., Moshkovskii, S.A., Naryzhny, S.N., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2013, vol. 12, pp. 123–134. doi 10.1021/pr300821nCrossRefGoogle Scholar
  83. 83.
    Chan, T.H.M., Lin, C.H., Qi, L., Fei, J., Li, Y., Yong, K.J., Liu, M., Song, Y., Chow, R.K.K., Ng, V.H.E., Yuan, Y.-F., Tenen, D.G., Guan, X.-Y., and Chen, L., Gut, 2014, vol. 63, pp. 832–843. doi 10.1136/gutjnl-2012-304037CrossRefGoogle Scholar
  84. 84.
    Melcher, T., Maas, S., Herb, A., Sprengel, R., Seeburg, P.H., and Higuchi, M., Nature, 1996, vol. 379, pp. 460–464. doi 10.1038/379460a0CrossRefGoogle Scholar
  85. 85.
    Jepson, J.E.C., Savva, Y.A., Jay, K.A., and Reenan, R.A., Nat. Methods, 2011, vol. 9, pp. 189–194. doi 10.1038/nmeth.1827CrossRefGoogle Scholar
  86. 86.
    Li, J.B., Levanon, E.Y., Yoon, J.-K., Aach, J., Xie, B., Leproust, E., Zhang, K., Gao, Y., and Church, G.M., Science, 2009, vol. 324, pp. 1210–1213. doi 10.1126/science. 1170995CrossRefGoogle Scholar
  87. 87.
    Bazak, L., Haviv, A., Barak, M., Jacob-Hirsch, J., Deng, P., Zhang, R., Isaacs, F.J., Rechavi, G., Li, J.B., Eisenberg, E., and Levanon, E.Y., Genome Res., 2014, vol. 24, pp. 365–376. doi 10.1101/gr.164749.113CrossRefGoogle Scholar
  88. 88.
    Streit, A.K., Matschke, L.A., Dolga, A.M., Rinné, S., and Decher, N., J. Biol. Chem., 2014, vol. 289, pp. 26762–26771. doi 10.1074/jbc.M113.545731CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Kliuchnikova
    • 1
  • K. G. Kuznetsova
    • 1
  • S. A. Moshkovskii
    • 1
    • 2
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations