Apoptotic endonuclease EndoG induces alternative splicing of telomerase catalytic subunit hTERT and death of tumor cells

Abstract

Telomerase activity is known to be regulated by alternative splicing of its catalytic subunit hTERT (human Telomerase Reverse Transcriptase) mRNA. Induction of non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. Strong correlation was found between expression of EndoG and hTERT splice-variants in 12 colon cancer cell lines. Overexpression of EndoG in СаСо-2 cells downregulated the expression of active full-length hTERT variant and upregulated non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, dramatically shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. These data indicated the participation of EndoG in alternative splicing of mRNA of telomerase catalytic subunit, regulation of telomerase activity and cell fate.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Blackburn, E. H., Nature, 2000, vol. 408, pp. 53–56. doi 10.1038/35040500

    CAS  Article  Google Scholar 

  2. 2.

    Harley, C.B., Futcher, A.B., and Greider, C.W., Nature, 1990, vol. 345, pp. 458–460. doi 10.1038/345458a0

    CAS  Article  Google Scholar 

  3. 3.

    Ewald, J.A., Desotelle, J.A., Church, D.R., Yang, B., Huang, W., Laurila, T.A., and Jarrard, D.F., Prostate, 2013, vol. 73, pp. 337–345. doi 10.1002/pros.22571

    CAS  Article  Google Scholar 

  4. 4.

    Lee, B.Y., Han, J.A., Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio, D., and Hwang, E.S., Aging Cell, 2006, vol. 5, pp. 187–195. doi 10.1111/j.1474-9726.2006.00199.x

    CAS  Article  Google Scholar 

  5. 5.

    Kaszubowska, L., Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 2008, vol. 59, Suppl. 9, pp. 169–186.

    Google Scholar 

  6. 6.

    Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W., Science, 1994, vol. 266, pp. 2011–2015.

    CAS  Article  Google Scholar 

  7. 7.

    Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle, S.D., Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q., Bacchetti, S., Haber, D.A., and Weinberg, R.A., Cell, 1997, vol. 90, pp. 785–795.

    CAS  Article  Google Scholar 

  8. 8.

    Listerman, I., Sun, J., Gazzaniga, F.S., Lukas, J.L., and Blackburn. E.H., Cancer Research, 2013, vol. 73, pp. 2817–2828. doi 10.1158/0008-5472.CAN-12-3082

    CAS  Article  Google Scholar 

  9. 9.

    Krams, M., Claviez, A., Heidorn, K., Krupp, G., Parwaresch, R., Harms, D., and Rudolph, P., American Journal of Pathology, 2001, vol. 159, pp. 1925–1932. doi 10.1016/S0002-9440(10)63039-8

    CAS  Article  Google Scholar 

  10. 10.

    Daniel, M., Peek, G.W., and Tollefsbol, T.O., Gene, 2012, vol. 498, pp. 135–146. doi 10.1016/j.gene.2012.01.095

    CAS  Article  Google Scholar 

  11. 11.

    Saebøe-Larssen, S., Fossberg, E., and Gaudernack, G., BMC Molecular Biology, 2006, vol. 7, pp. 26–32.

    Article  Google Scholar 

  12. 12.

    Hrdlickov., tR., Nehyba, J., and Bose, H.R., Jr., {iMol. Cell Biol.,} 2012, vol. 32, no. 21, pp. 4283–4296. doi 10.1128/MCB.00550-12

    Google Scholar 

  13. 13.

    Ulaner, G.A., Hu, J.F., Vu, T.H., Giudice, L.C., and Hoffman, A.R., Cancer Research, 1998, vol. 58, pp. 4168–4172.

    CAS  Google Scholar 

  14. 14.

    Ulaner, G.A., Hu, J.F., Vu, T.H., Oruganti, H., Giudice, L.C., and Hoffman, A.R., International Journal of Cancer, 2000, vol. 85, pp. 330–335.

    CAS  Article  Google Scholar 

  15. 15.

    Listerman, I., Sun, J., Gazzaniga, F.S., Lukas, J.L., and Blackburn, E.H., Cancer Research, 2013, vol. 73, pp. 2817–2828. doi 10.1158/0008-5472.CAN-12-3082

    CAS  Article  Google Scholar 

  16. 16.

    Oulton, R. and Harrington, L., Molecular Biology of the Cell, 2004, vol. 15, pp. 3244–3256. doi 10.1091/mbc.E04-03-0178

    CAS  Article  Google Scholar 

  17. 17.

    Lydeard, J.R., Jain, S., Yamaguchi, M., and Haber, J.E., Nature, 2007, vol. 448, pp. 820–823. doi 10.1038/nature06047

    CAS  Article  Google Scholar 

  18. 18.

    Nagata, S., Nagase, H., Kawane, K., Mukae, N., and Fukuyama, H., Cell Death and Differentiation, 2003, vol. 10, pp. 108–116. doi 10.1038/sj.cdd.4401161

    CAS  Article  Google Scholar 

  19. 19.

    Ruiz-Carrillo, A. and Renaud, J., EMBO Journal, 1987, vol. 6, pp. 401–407.

    CAS  Google Scholar 

  20. 20.

    Diener, T., Neuhaus, M., Koziel, R., Micutkova, L., and Jansen-Dürr, P., Experimental Gerontology, 2010, vol. 45, pp. 638–644. doi 10.1016/j.exger.2010.03.002

    CAS  Article  Google Scholar 

  21. 21.

    Basnakian, A.G., Apostolov, E.O., Yin, X., Abiri, S.O., Stewart, A.G., Singh, A.B., and Shah, S.V., Experimental Cell Research, 2006, vol. 312, pp. 4139–4149. doi 10.1016/j.yexcr.2006.09.012

    CAS  Article  Google Scholar 

  22. 22.

    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    CAS  Article  Google Scholar 

  23. 23.

    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    CAS  Article  Google Scholar 

  24. 24.

    Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G., and Robenek, H., Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, vol. 24, pp. 1789–1795. doi 10.1161/01.ATV.0000140061.89096.2b

    CAS  Article  Google Scholar 

  25. 25.

    Kovalenko, N.A., Zhdanov, D.D., Bibikova, M.V., and Gotovtseva, V.I., Biomed Khim., 2011, vol. 57, pp. 501–510.

    CAS  Article  Google Scholar 

  26. 26.

    O’Callaghan, N.J. and Fenech, M., (2011) Biological Procedures Online, 2011, vol. 13, 3, doi 10.1186/1480-9222-13-3

  27. 27.

    Cawthon, R.M., Nucleic Acids Research, 2002, vol. 30, e47.

    Article  Google Scholar 

  28. 28.

    Ruden, M. and Puri, N., Cancer Treatment Reviews, 2013, vol. 39, pp. 444–456.

    CAS  Article  Google Scholar 

  29. 29.

    Read, M.A., Wood, A.A., Harrison, J.R., Gowan, S.M., Kelland, L.R., Dosanjh, H.S., and Neidle, S. J. Med. Chem., 1999, vol. 42, pp. 4538–4546.

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, Z., Du, Y., Zhang, L., and Dong, S., Biosens. Bioelectron., 2012, vol. 34, pp. 100–105. doi 10.1016/j.bios.2012.01.024

    CAS  Article  Google Scholar 

  31. 31.

    Martadinata, H., Heddi, B., Lim, K.W., and Phan, A.T., Biochemistry, 2011, vol. 50, pp. 6455–6461. doi 10.1021/bi200569f

    CAS  Article  Google Scholar 

  32. 32.

    Zhdanov, D.D., Fahmi, T., Wang, X., Apostolov, E.O., Sokolov, N.N., Javadov, S., and Basnakian, A.G., DNA Cell Biol., 2015, vol. 34, pp. 316–326. doi 10.1089/dna.2014.2772

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. D. Zhdanov.

Additional information

Original Russian Text © D.D. Zhdanov, D.A. Vasina, V.S. Orlova, V.Y. Gotovtseva, M.V. Bibikova, V.S. Pokrovsky, M.V. Pokrovskaya, S.S. Aleksandrova, N.N. Sokolov, 2016, published in Biomeditsinskaya Khimiya.

The article was translated by the author (D. D. Zhdanov).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, D.D., Vasina, D.A., Orlova, V.S. et al. Apoptotic endonuclease EndoG induces alternative splicing of telomerase catalytic subunit hTERT and death of tumor cells. Biochem. Moscow Suppl. Ser. B 10, 310–321 (2016). https://doi.org/10.1134/S1990750816040090

Download citation

Keywords

  • EndoG
  • telomerase
  • hTERT
  • alternative splicing
  • CaCo-2