Advertisement

Selection of DNA aptamers for breast cancer

  • G. S. Zamay
  • I. V. Belyanina
  • A. S. Zamay
  • M. A. Komarova
  • A. V. Krat
  • E. N. Eremina
  • R. A. Zukov
  • A. E. Sokolov
  • T. N. Zamay
Article

Abstract

A method of selection of DNA aptamers to breast tumor tissue based on the use of postoperative material has been developed. Breast cancer tissues were used as the positive target; the negative targets included benign tumor tissue, adjacent healthy tissues, breast tissues from mastopathy patients, and also tissues of other types of malignant tumors. During selection a pool of DNA aptamers demonstrating selective binding to breast cancer cells and tissues and insignificant binding to breast benign tissues has been obtained. These DNA aptamers can be used for identification of protein markers, breast cancer diagnostics, and targeted delivery of anticancer drugs.

Keywords

SELEX DNA aptamers oligonucleotides breast cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pak, D.D., Usov, F.N., Fetisova, E.Yu., Volchenko, A.A., and Efanov, V.V., Onkologiya, 2013, vol. 4, pp. 34–39.Google Scholar
  2. 2.
    Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J.W.W., Comber, H., Forman, D., and Bray, F., Eur. J. Cancer, 2013, vol. 49, no. 6, pp. 1374–1403. doi dx.doi.org/10.1016/j.ejca.2012.12.027CrossRefGoogle Scholar
  3. 3.
    Kamangar, F., Dores, G.M., and Andersonm W.F., J. Clin. Oncol., 2006, vol. 24, pp. 2137–2150.CrossRefGoogle Scholar
  4. 4.
    Watson, M.A., Dintzis, S., and Darrow, C.M., Cancer Res., 1999, vol. 59, pp. 3028–3031.Google Scholar
  5. 5.
    Ross, J.S., Linette, G.P., Stec, J., Clark, E., Ayers, M., Leschly, N., Symmans, W.F., Hortobagyi, G.N., and Pusztai L., Expert Rev. Mol. Diagn., 2003, vol. 3, pp. 573–585.CrossRefGoogle Scholar
  6. 6.
    Pultz, B.A., Luz, F.A.C., Faria, P.R., Oliveira, A.P.L., Araújo, R.A., and Silva, M.J.B., J. Cancer, 2014, vol. 5, pp. 559–571.CrossRefGoogle Scholar
  7. 7.
    Misek, D.E. and Kim, E.H., Int. J. Proteomics, 2011, 343582, 9. doi dx.doi.org/10.1021/pr501224fGoogle Scholar
  8. 8.
    Berezovski, M.V., Lechmann, M., Musheev, M.U., Mak, T.W., and Krylov, S.N., J. Am. Chem. Soc., 2008, vol. 130, pp. 9137–9143. doi 10.1021/ja801951pCrossRefGoogle Scholar
  9. 9.
    Iliuk, A.B., Hu, L., and Tao, W.A., Anal. Chem., 2011, vol. 83, pp. 4440–4452.CrossRefGoogle Scholar
  10. 10.
    Wehbe, M.B., Labib, M.A., Muharemagic, D.A., Zamay, A.S., and Berezovski, M.V., Biosens. Bioelectron., 2015, vol. 67, pp. 280–286.CrossRefGoogle Scholar
  11. 11.
    Kolovskaya, O.S., Savitskaya, A.G., Zamay, T.N., Reshetneva, I.T., Zamay, G.S., Erkaev, E.N., Wang, X.B., Wehbe, M.B., Salmina, A.B., Perianova, O.V., Zubkova, O.A., Spivak, E.A., Mezko, V.S., Glazyrin, Yu.E., Titova, N.M., Berezovski, M.V., and Zamay, A.S., J. Medic. Chem., 2013, vol. 56, pp. 1564–1572.CrossRefGoogle Scholar
  12. 12.
    Kolovskaya, O.S., Zamay, T.N., Zamay, A.S., Glazyrin, Yu. E., Spivak, E.A., Zubkova, O.A., Kadkina, A.V., Erkaev, E.N., Zamay, G.S., Savitskaya, A.G., Trufanova, L.V., Petrova, L.L., and Berezovsky, M.V., Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, vol. 8, pp. 60–72.CrossRefGoogle Scholar
  13. 13.
    Zamay, A.S., Zamay, G.S., Glazyrin, Yu.E., Zamay, T.N., Krat, A.V., Modestov, A.A., Zubkova, O.A., Spivak, E.A., Sukhovolskaia, M.A., Kuznetsova, S.A., Salmina, A.B., Gargaun, A.A., Berezovski, M.V., Kolovskaya, O.S., Oligos & Peptides-ChimicaOggi-Chemistry Today, 2014, vol. 32, pp. 24–28.Google Scholar
  14. 14.
    Zamay, G.S., Kolovskaya, O.S., Zamay, T.N., Glazyrin, Y.E., Krat, A.V., Zubkova, O., Spivak, E., Wehbe, M., Gargaun, A., Muharemagic, D., Komarova, M., Grigorieva, V., Savchenko, A., Modestov, A.A., Berezovski, M.V., and Zamay, A.S., Molecular Therapy, 2015, vol. 23, pp. 1486–1496. doi 10.1038/mt.2015.108CrossRefGoogle Scholar
  15. 15.
    Ruff, K.M., Snyder, T.M., and Liu, D.R., J. Amer. Chem. Soc., 2010, vol. 132, pp. 9453–9464.CrossRefGoogle Scholar
  16. 16.
    Zhang, K., Tang, L., Sefah, K., Zhao, Z., Zhu, G., Sun, W., Goodison, S., and Tan, W., ChemMedChem, 2012, vol. 7, pp. 79–84.CrossRefGoogle Scholar
  17. 17.
    Li, X., Zhang, W., Liu, L., Zhu, Z., Ouyang, G., An, Y., Zhao, C., and Yang, C.J., Anal. Chem., 2014, vol. 86, pp. 6596–6603. doi 10.1021/ac501205qCrossRefGoogle Scholar
  18. 18.
    Hu, Y., Duan, J., Zhan, Q., Wang, F., Lu, X., and Yang, X.-D., PLoS One, 2012, vol. 7, e31970. doi 10.1371/journal.pone.0031970CrossRefGoogle Scholar
  19. 19.
    Giangrande, P., McNamara, J., Thiel, K., Thiel, W., and Rockney, W., HER2 Nucleaic Acid Aptamers, 2013, US20130129719.Google Scholar
  20. 20.
    Lee, Y.J., Kim, S., Park, S.-A., Kim, Y., Lee, J.E., Noh, D.-Y., Kim, K.-T., Ryu, S.H., and Suh, P.-G., Molecular Therapy, 2013, vol. 21, pp. 1004–1013. doi 10.1038/mt.2013.30CrossRefGoogle Scholar
  21. 21.
    Shao, K., Ding, W., Wang, F., Li, H., Ma, D., and Wang, H., PLoS One, 2011, vol. 6, e24910.CrossRefGoogle Scholar
  22. 22.
    Yufa, R., Krylova, S.M., Bruce, C., Bagg, E.A., Schofield, C.J., and Krylov, S.N., Anal. Chem., 2015, vol. 87, pp. 1411–1419.CrossRefGoogle Scholar
  23. 23.
    Levay, A., Brenneman, R., Hoinka, J., Sant, D., Cardone, M., Trinchieri, G., Przytycka, T.M., and Berezhnoy, A., Nucl. Acids Res. 2015, vol. 43, no. 12, e82. doi 10.1093/nar/gkv534CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • G. S. Zamay
    • 1
    • 2
  • I. V. Belyanina
    • 2
  • A. S. Zamay
    • 2
  • M. A. Komarova
    • 2
  • A. V. Krat
    • 3
  • E. N. Eremina
    • 2
    • 3
  • R. A. Zukov
    • 2
    • 3
  • A. E. Sokolov
    • 1
  • T. N. Zamay
    • 1
    • 2
  1. 1.Kirensky Institute of PhysicsKrasnoyarskRussia
  2. 2.Voino-Yasenetski Krasnoyarsk State Medical UniversityKrasnoyarskRussia
  3. 3.Kryzhanovsky Krasnoyarsk Regional Clinical Cancer Center (KKRCCC)KrasnoyarskRussia

Personalised recommendations