Skip to main content
Log in

The adipogenic function and other biological effects of insulin

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Studies on experimental animals with knockout of the insulin receptor gene (Insr) in the whole body or in certain tissues and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by β-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reaches in the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apo-proteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by adipocytes during inhibition of glucose transformation into triglyceride in adipose tissue. Knockout of the Insr gene in muscles blocked glucose uptake by myocytes, but it did not induce hyperglycemia, probably due to the increase in glucose uptake by other organs, which retained the insulin receptor, and induced some increase in fat resources in adipose tissue. Similar results were obtained in mice with knockout the glucose transporter 4 GLUT4 in muscle and/or adipose tissue. Insulin microinjections in the brain, in the cerebral ventricle 4 (CVI) and mediobasal hypothalamus (MBH) did not affect the insulin levels in the general circulation, but effectively activate lipogenesis and inhibited lipolysis in adipose tissue. They induced obesity, similar to conventional obesity when the insulin levels increased. These results may serve as an additional confirmation of the importance of the adipogenic insulin function in mechanisms of regulation of general metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunting, F.G. and Best, C.H., J. Lab. Clin. Med., 1922, vol. 7, pp. 251–266.

    Google Scholar 

  2. Banting, F.G., Best, C.H., Collip, J.B., et al., Trans. Assoc. Am. Physicians, 1922, vol. 34, pp. 337–347.

    Google Scholar 

  3. Roth, J., Queresni, S., Whitford, I., Vranic, M., Kahn, C.R., Fantus, G., and Dirck, J.H., Diabetes Metab. Res. Rev., 2012, vol. 28, pp. 293–304.

    Article  CAS  Google Scholar 

  4. Sanger, F. and Tuppy, H., Biochem. J., 1951, vol. 49, pp. 463–481.

    Article  CAS  Google Scholar 

  5. Sanger, F. and Tuppy, H., Biochem. J., 1951, vol. 49, pp. 481–490.

    Article  CAS  Google Scholar 

  6. Sanger, F. and Tompson, E.O.P., Biochem. J., 1953, vol. 53, pp. 353–366.

    Article  CAS  Google Scholar 

  7. Sanger, F. and Tompson, E.O.P., Biochem. J., 1953, vol. 53, pp. 366–374.

    Article  CAS  Google Scholar 

  8. Nandi, A., Kitamura, Y., Kahn, C.R., and Accili, D., Physiol. Rev., 2003, vol. 84, pp. 623–647. doi 10.1152/physrev.00032.2003

    Article  Google Scholar 

  9. Widdowson, E.M., Nature, 1950, vol. 166, pp. 626–628.

    Article  CAS  Google Scholar 

  10. Kahn, C.R., Experimental Diab. Res., 2003, vol. 4, pp. 169–182. doi 10.1080/15438600390261408

    Article  Google Scholar 

  11. Accili, D., Diabetes, 2004, vol. 53, pp. 1633–1642.

    Article  CAS  Google Scholar 

  12. Michaek, M.D., Kulkarni, R.N., Postic, C., Previs, S.F., Shulman, G.I., Magnussen, M.A., and Kahn, C.R., Molecular. Cell., 2000, vol. 6, pp. 87–97.

    Article  Google Scholar 

  13. Okamoto, H., Obici, S., Accili, D., and Rosetti, L., J. Clin. Invest., 2005, vol. 115, pp. 1314–1322. doi 10.1172/JCI200523096

    Article  CAS  Google Scholar 

  14. Brüning, J.C., Michael, M.D., Winnay, J.N., Hayashi, T., Hörsch, D., Accili, D., Goodyear, L.J., and Kahn, C.R., Molecular Cell., 1998, vol. 2, pp. 559–569. doi 10.1016/S1097-2765(00)80155-0

    Article  Google Scholar 

  15. Blüher, M., Michael, M.D., Peroni, O.D., Ueli, K., Carter, N., Kahn, B.B., and Kahn, C.R., Cell, 2002, vol. 3, pp. 25–38. doi 10.1016/S1534-5807(02)00199-5

    Google Scholar 

  16. Kulkarni, R.N., Brüning, J.C., Winnay, J.N., Postic, C., Madnuson, M.A., and Kahn, C.R., Cell, 1999, vol. 96, pp. 329–339.

    Article  CAS  Google Scholar 

  17. Okada, T., Liew, C.W., Hu, J., Hinault, C., Michael, M.D., Krützfedt, J., Yin, C., Holzenberger,M., Stoffel, M., and Kulkarni, R., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 8977–8982.

    Article  CAS  Google Scholar 

  18. Vicent, D., Ilany, J., Kondo, T., Naruse, K., Fisher, S.J., Kisanuki, Y.Y., Bursell, S., Yanagisawa, M., King, G.L., and Kahn, C.R., J. Clin. Invest., 2003, vol. 111, pp. 1373–1380. doi 10.1172/JCI1200315211

    Article  CAS  Google Scholar 

  19. Rask-Madsen, C., Li, Q., Freund, B., Feather, D., Abramov, R., Wu, I.-H., Chen, K., YamamotoHiraoka, J., Goldenbogen, J., Sotiropoulos, K.B., Clermont, A., Geraldes, P., Dall’Osso, C., Wegers A., Huang, P.L., Rekhter, M., Scalla, R., Kahn, C.R., and King, G.L., Cell Metab., 2010, vol. 11, pp. 379–389. doi 10.1016/jcmet.2010.03.013

    Article  CAS  Google Scholar 

  20. Rask-Madsen, C. and Kahn, C.R., Arterioscler. Thromd. Vasc. Biol., 2012, vol. 32, pp. 2052–2059. doi 10.1161/ATVBANA.111.241919

    Article  CAS  Google Scholar 

  21. Abel, E.D., Peroni, O., Kim, J.K., Kim, Y.B., Boss, O., Hadro, E., Minnemann, T., Shulman, G.I., and Kahn, B.B., Nature, 2001, vol. 409, pp. 729–733.

    Article  CAS  Google Scholar 

  22. Zisman, A., Peroni, O.D., Abel, E.D., Michael, M.D., Mauvais-Jarvis, F., Lowell, B.B., Wojtaszewski, J.F., Hirshman, M.F., Virkamaki, A., Goodyear, L.J., Kahn, C.R., Kahn, B.B., Nat. Med., 2000, vol. 6, pp. 924–928.

    Article  CAS  Google Scholar 

  23. Konani, K., Peroni, O.D., Minokoshi, Y., Boss, O., and Khan, B.B., J. Clin. Invest., 2004, vol. 114, pp. 1666–1675. doi 10.1172/JCI12000421341

    Article  Google Scholar 

  24. Randle, P.J., Diabetes Metab. Rev., 1998, vol. 14, pp. 263–283.

    Article  CAS  Google Scholar 

  25. Roden, M., News Physiol. Sci., 2004, vol. 19, pp. 92–96. doi 10.1152/nips.01459.2003

    CAS  Google Scholar 

  26. Pankov, Yu.A., Mol. Biol. (Moscow), 2013, vol. 47, pp. 891–899.

    Google Scholar 

  27. Brüning, J.C., Gautam, D., Burks, D.J., Gillette, J., Schubert, M., Orban, P.C., Klein, R., Krone, W., Müller- Wieland, M., and Kahn, C.R., Science, 2000, vol. 289, pp. 2122–2125. doi 10.1126/science.289.5487.2122

    Article  Google Scholar 

  28. Scherer, T., O’Hare, J., Diggs-Andrews, K., Schweiger, M., Cheng, B., Lindtner, C., Zielinski, E., Wempati, P., Su, K., Dighe, S., Milson, T., Puchowicz, M., Scheja, L., Zechner, R., Fisher, J., Previs, S., and Buettner, C., Cell Metab., 2011, vol. 13, pp. 183–194. doi 10.1016/jcmet.2011.01.008

    Article  CAS  Google Scholar 

  29. TitovL, V.N., Vestnik Rus. Akad. Med. Nauk, 2005, no. 2, pp. 3–8.

    Google Scholar 

  30. Titov, V.N., Klin. Lab. Diagn., 2012, no. 5, pp. 3–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Pankov.

Additional information

Original Russian Text © Yu.A. Pankov, 2016, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankov, Y.A. The adipogenic function and other biological effects of insulin. Biochem. Moscow Suppl. Ser. B 10, 1–9 (2016). https://doi.org/10.1134/S199075081601011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081601011X

Keywords

Navigation