Skip to main content
Log in

Experimental estimation of proteome size for cells and human plasma

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Huge range of concentrations of different proteoforms and insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of the human proteome. In our investigations, we tried to evaluate the size of different proteomes (cells and plasma). The approach used is based on detection of protein spots in two-dimensional electrophoresis (2-DE) after protein staining by dyes with different sensitivities. The functional dependence of the number of detected protein spots from sensitivity of protein dyes was generated. Next, by extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) it was calculated that a single human cell (HepG2) may contain minimum 70000 proteoforms, human plasma—1.5 million. Utilization of this approach to other, smaller proteomes, showed the competency of this extrapolation. For instance, the size of mycoplasma (Acholeplasma laidlawii) was estimated in 1100 proteoforms, yeast (Saccharomyces cerevisiae)—40000, Escherichia coli—6200, Pyrococcus furiosus—3400. In hepatocytes, the amount of proteoforms was the same as in HepG2–70000. Significance of obtained data is in possibilities to estimating the proteome organization and planning next steps in its study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkins, M.R., Appel, R.D., Van Eyk, J.E., Chung, M.C.M., Görg, A., Hecker, M., Huber, L.A., Langen, H., Link, A.J., Paik, Y.-K., Patterson, S.D., Pennington, S.R., Rabilloud, T., Simpson, R.J., Weiss, W., and Dunn, M. J., Proteomics, 2006, vol. 6, pp. 4–8.

    Article  CAS  Google Scholar 

  2. Archakov, A.I., Ivanov, Y.D., Lisitsa, A.V., and Zgoda, V.G., Proteomics, 2007, vol. 7, pp. 4–9.

    Article  CAS  Google Scholar 

  3. Archakov, A.I., Ivanov, Y.D., Lisitsa, A.V., and Zgoda, V.G., Proteomics, 2009, vol. 9, pp. 1326–1343.

    Article  CAS  Google Scholar 

  4. Archakov, A., Zgoda, V., Kopylov, A., Naryzhny, S., Chernobrovkin, A., Ponomarenko, E., and Lisitsa, A., Expert Rev. Proteomics, 2012, vol. 9, no. 6, pp. 667–676.

    Article  CAS  Google Scholar 

  5. Naryzhny, S., Lisitsa, A., Zgoda, V., Ponomarenko, E., and Archakov, A., Electrophoresis, 2014, vol. 35, no. 6, pp. 895–900.

    Article  CAS  Google Scholar 

  6. Omenn, G.S., Proteomics, 2004, vol. 4, 1235–1240.

    Article  CAS  Google Scholar 

  7. Beadle, G.W. and Tatum, E.L., Proc. Natl. Acad. Sci. USA, 1941, vol. 27, pp. 499–506.

    Article  CAS  Google Scholar 

  8. International Human Genome Sequencing Consortium, Nature, 2004, vol. 431, pp. 931–945.

    Article  Google Scholar 

  9. Lisitsa, A., Moshkovskii, S., Chernobrovkin, A., Ponomarenko, E., and Archakov, A., Expert Rev. Proteomics, 2014, vol. 11, no. 1, pp. 121–129.

    Article  CAS  Google Scholar 

  10. Li, M., Durbin, K.R., Sweet, S.M., Tipton, J.D., Zheng, Y., and Kelleher, N.L., Proteomics, 2013, vol. 13, no. 17, pp. 2585–2596.

    Article  CAS  Google Scholar 

  11. Casado-Vela, J.C., Lacal, J.C., and Elortza, F., Proteomics, 2013, vol. 13, no. 1, pp. 5–11.

    Article  CAS  Google Scholar 

  12. Smith, L.M. and Kelleher, N.L., Nat. Methods, 2013, vol. 10, no. 3, pp. 186–187.

    Article  CAS  Google Scholar 

  13. Jungblut, P.R., Holzhütter, H.G., Apweiler, R., and Schlüter, H., Chem. Cent. J., 2008, vol. 2, p. 16.

    Article  Google Scholar 

  14. Garbis, S., Lubec, G., and Fountoulakis, M., J. Chromatogr. A, 2005, vol. 1077, pp. 1–18.

    Article  CAS  Google Scholar 

  15. Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F., and Sanchez, J.C., Electrophoresis, 2000, vol. 21, pp. 1104–1115.

    Article  CAS  Google Scholar 

  16. O’Farrell, P.H., J. Biol. Chem., 1975, vol. 250, pp. 4007–4021.

    Google Scholar 

  17. Klose, J., Methods Mol. Biol. (Clifton, N.J.), 1999, vol. 112, pp. 147–172.

    CAS  Google Scholar 

  18. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 9390–9395.

    Article  CAS  Google Scholar 

  19. Adkins, J.N., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H., Smith, R.D., Springer, D.L., and Pounds, J.G., Mol. Cell. Proteomics: MCP, 2002, vol. 1, pp. 947–955.

    Article  CAS  Google Scholar 

  20. Nielsen, M.L., Savitski, M.M., and Zubarev, R.A., Mol. Cell. Proteomics: MCP, 2006, vol. 5, pp. 2384–2391.

    Article  CAS  Google Scholar 

  21. Omenn, G.S., States, D.J., Adamski, M., Blackwell, T.W., Menon, R., Hermjakob, H., Apweiler, R., Haab, B.B., Simpson, R.J., Eddes, J.S., Kapp, E.A., Moritz, R.L., Chan, D.W., Rai, A.J., Admon, A., Aebersold, R., Eng, J., Hancock, W.S., Hefta, S.A., Meyer, H., Paik, Y.-K., Yoo, J.-S., Ping, P., Pounds, J., Adkins, J., Qian, X., Wang, R., Wasinger, V., Wu, C.Y., Zhao, X., Zeng, R., Archakov, A., Tsugita, A., Beer, I., Pandey, A., Pisano, M., Andrews, P., Tammen, H., Speicher, D.W., and Hanash, S.M., Proteomics, 2005, vol. 5, pp. 3226–3245.

    Article  CAS  Google Scholar 

  22. Nagaraj, N., Wisniewski, J.R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Pääbo, S., and Mann, M., Mol. Systems Biology, 2011, vol. 7, p. 548.

    Article  Google Scholar 

  23. Naryzhny, S.N., Anal. Biochem., 2009, vol. 392, pp. 90–5.

    Article  CAS  Google Scholar 

  24. Naryzhny, S.N., Anal. Biochem., 1996, vol. 238, pp. 50–53.

    Article  CAS  Google Scholar 

  25. Naryzhny, S.N. and Lee, H., Electrophoresis, 2001, vol. 22, pp. 1764–1775.

    Article  CAS  Google Scholar 

  26. Naryzhny, S.N. and Lee, H., Proteomics, 2003, vol. 3, pp. 930–936.

    Article  CAS  Google Scholar 

  27. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., and Mann, M., Nature Protocols, 2006, vol. 1, pp. 2856–2860.

    Article  CAS  Google Scholar 

  28. Winkler, C., Denker, K., Wortelkamp, S., and Sickmann, A., Electrophoresis, 2007, vol. 28, pp. 2095–2099.

    Article  CAS  Google Scholar 

  29. Chizzonite, R., Truitt, T., Podlaski, F.J., Wolitzky, A.G., Quinn, P.M., Nunes, P., Stern, A.S., and Gately, M.K., J. Immunol., 1991, vol. 147, pp. 1548–1556.

    CAS  Google Scholar 

  30. Thiede, B., Koehler, C.J., Strozynski, M., Treumann, A., Stein, R., Zimny-Arndt, U., Schmid, M., and Jungblut, P.R., Mol. Cell. Proteomics: MCP, 2013, vol. 12, no. 2, pp. 529–538.

    Article  CAS  Google Scholar 

  31. Deracinois, B., Flahaut, C., Duban-Deweer, S., and Karamanos, Y., Proteomes, 2013, vol. 1, no. 3, pp. 180–218.

    Article  CAS  Google Scholar 

  32. UniProt Consortium, Nucleic Acids Res., 2008, vol. 36, pp. 190–195.

    Article  Google Scholar 

  33. Richardson, M.R., Liu, S., Ringham, H.N., Chan, V., and Witzmann, F.A., Electrophoresis, 2008, vol. 29, no. 12, pp. 2637–2644.

    Article  CAS  Google Scholar 

  34. Tonella, L., Walsh, B.J., Sanchez, J.C., Ou, K., Wilkins, M.R., Tyler, M., Frutiger, S., Gooley, A.A., Pescaru, I., Appel, R.D., Yan, J.X., Bairoch, A., Hoogland, C., Morch, F.S., Hughes, G.J., Williams, K.L., and Hochstrasser, D.F., Electrophoresis, 1998, vol. 11, no. 11, pp. 1960–1971.

    Article  Google Scholar 

  35. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J., Molecular Biology of the Cell, 3rd ed., NYC: Garland Publishing, 1994.

    Google Scholar 

  36. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J., Molecular Cell Biology, 4th ed., NYC: W.H. Freeman and Company, 2000.

    Google Scholar 

  37. Lim, H. and Yates, J.R., III, Encyclopedia of Life Sciences, 2001, wwwelsnet

    Google Scholar 

  38. Janke, C., Holzer, M., Klose, J., and Arendt, T., FEBS Letters, 1996, vol. 379, pp. 222–226.

    Article  CAS  Google Scholar 

  39. Milo, R., Jorgensen, P., Moran, U., Weber, G., and Springer, M., Nucleic Acids Res., 2010, vol. 38 (Database issue), pp. 750–753.

    Article  Google Scholar 

  40. Anderson, N.L. and Anderson, N.G., Mol. Cell Proteomics: MCP, 2002, vol. 11, no. 11, pp. 845–867.

    Article  Google Scholar 

  41. Hortin, G.L. and Sviridov, D., J. Proteomics, 2010, vol. 73, no. 3, pp. 629–636.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Naryzhny.

Additional information

Original Russian Text © S.N. Naryzhny, V.G. Zgoda, M.A. Maynskova, N.L. Ronzhina, N.V. Belyakova, O.K. Legina, A.I. Archakov, 2015, published in Biomeditsinskaya Khimiya.

The article was translated by the author (S.N. Naryzhny).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naryzhny, S.N., Zgoda, V.G., Maynskova, M.A. et al. Experimental estimation of proteome size for cells and human plasma. Biochem. Moscow Suppl. Ser. B 9, 305–311 (2015). https://doi.org/10.1134/S1990750815040034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750815040034

Keywords

Navigation