Skip to main content
Log in

Metabolism of innate immune cells in bacterial infections

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Metabolic activity of innate immune cells infected by various doses of Gram-negative (Yersinia pseudotuberculosis, Salmonella enteritidis) and Gram positive (Staphylococcus aureus, Listeria monocytogenes) bacteria has been investigated. Using various animal models we found that in during the initial period (up to 2 days) the changes in cellular responses depend on the type of the pathogen. In response to infection caused by Gram-negative bacteria predominant of neutrophil accumulation in the foci of inflammation was observed, while Gram-positive bacteria induced preferential accumulation of macrophages. The study of metabolism of these cells showed that the response of terminally differentiated primed phagocytes to pathogen appearance was higher than in cells circulating in blood. In addition to the priming state the phagocyte reactivity is influenced by the bacterial load. At a low phagocyte/microbe ratio the cells reaction is almost undetectable, while an excess of microorganisms causes (despite of the increase of the phagocytic parameters) the hyperactivation of cell metabolism and production of maximal amounts of bactericide agents, which exhibit a damaging effect on the cell itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Totolyan, A.A. and Freidlin, I.S., Kletki immunnoi sistemy (Cells of the Immune System), Saint Petersburg: Nauka, 2000.

    Google Scholar 

  2. Mayanskii, A.N. and Mayanskii, D.N., Ocherki o neitrofile i makrofage (The Essay about Neutrophil and Macrophage), Novosibirsk: Nauka, 1989.

    Google Scholar 

  3. Silva, M.T., J. Leukoc. Biol., 2010, vol. 87, pp. 93–106.

    Article  CAS  Google Scholar 

  4. Harrison, O.J. and Maloy, K.J., J. Innate Immun., 2011, vol. 3, pp. 585–593.

    Article  CAS  Google Scholar 

  5. Newton, K. and Dixit, V.M., Cold Spring Harb. Perspect. Biol., 2012, vol. 4, a006049.

    Article  Google Scholar 

  6. Plekhova, N.G. and Somova, L.M., Byul. SB RAMS, 2011, vol. 31, pp. 3–10.

    Google Scholar 

  7. Mastroeni, P., Curr. Mol. Med., 2002, vol. 2, pp. 393–406.

    Article  CAS  Google Scholar 

  8. Greenberg, S. Curr. Opin. Immunol., 2002, vol. 14, pp. 136–145.

    Article  CAS  Google Scholar 

  9. Ward, P.P., Mendoza-Meneses, M., Park, P.W., and Conneely, O.M., Am. J. Pathol., 2008, vol. 172, pp. 1019–1029.

    Article  CAS  Google Scholar 

  10. Reutov, V.P., Biochemistry (Moscow), 2002, vol. 67, pp. 353–376.

    Article  Google Scholar 

  11. Kaplan, S.S., Lancaster, J.R., Basford, R.E., and Simmons, R.L., Infect. Immun., 1996, vol. 64, pp. 69–76.

    CAS  Google Scholar 

  12. Schulz, K., Kerber, S., and Kelm, M., J. Nitric Oxide, 1999, vol. 3, no. 3, pp. 225–234.

    Article  CAS  Google Scholar 

  13. Butakov, A.A., The development of a complex of express methods for immunoepidemiological studies, Cand. Sci. (Med) Dissertation Moscow: Institute of Immunology, 1991.

    Google Scholar 

  14. Lochner, M., Kastenmüller, K., Neuenhahn, M., Weighardt, H., Busch, D.H., Reindl, W., and Förster, I., Infect. Immun., 2008, vol. 76, pp. 3881–3890.

    Article  CAS  Google Scholar 

  15. Levi, O., Expert. Opin. Investig. Drugs, 2002, vol. 11, pp. 159–167.

    Article  Google Scholar 

  16. Nathan, C., Nat. Rev. Immunol., 2006, vol. 6, pp. 173–182.

    Article  CAS  Google Scholar 

  17. Greenberg, S. and Grinstein, S., Curr. Opin. Immunol., 2002, vol. 14, pp. 136–145.

    Article  CAS  Google Scholar 

  18. Serbina, N.V., Jia, T., Hohl, T.M., and Pamer, E.G., Annu. Rev. Immunol., 2008, vol. 26, pp. 421–452.

    Article  CAS  Google Scholar 

  19. Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., Sarnacki, S., Cumano, A., Lauvau, G., and Geissmann, F., Science, 2007, vol. 317, pp. 666–670.

    Article  CAS  Google Scholar 

  20. Spinner, J.L., Seo, K.S., O’Loughlin, J.L., Cundiff, J.A., Minnich, S.A., Bohach, G.A., and Kobayashi, S.D., PLoS One, 2010, vol. 18, e9279.

  21. Medzhitov, R., Schneider, D.S., and Soares, M.P., Science, 2012, vol. 335, pp. 936–941.

    Article  CAS  Google Scholar 

  22. Silva, M.T., J. Leukoc. Biol., 2010, vol. 87, pp. 93–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Plekhova.

Additional information

Original Russian Text © N.G. Plekhova, L.M. Somova, E.I. Drobot, 2014, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhova, N.G., Somova, L.M. & Drobot, E.I. Metabolism of innate immune cells in bacterial infections. Biochem. Moscow Suppl. Ser. B 8, 155–163 (2014). https://doi.org/10.1134/S1990750814020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750814020097

Keywords

Navigation